File: roi_align_kernel.cpp

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (400 lines) | stat: -rw-r--r-- 11,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include <ATen/ATen.h>
#include <torch/library.h>

#include "./roi_align_common.h"

namespace vision {
namespace ops {

namespace {

template <typename T>
void roi_align_forward_kernel_impl(
    int n_rois,
    const T* input,
    const T& spatial_scale,
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
    const T* rois,
    T* output) {
  // (n, c, ph, pw) is an element in the pooled output
  // can be parallelized using omp
  // #pragma omp parallel for num_threads(32)
  for (int n = 0; n < n_rois; n++) {
    int index_n = n * channels * pooled_width * pooled_height;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, (T)1.);
      roi_height = std::max(roi_height, (T)1.);
    }

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    // When the grid is empty, output zeros.
    const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4

    // we want to precalculate indices and weights shared by all channels,
    // this is the key point of optimization
    std::vector<detail::PreCalc<T>> pre_calc(
        roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
    detail::pre_calc_for_bilinear_interpolate(
        height,
        width,
        pooled_height,
        pooled_width,
        roi_start_h,
        roi_start_w,
        bin_size_h,
        bin_size_w,
        roi_bin_grid_h,
        roi_bin_grid_w,
        pre_calc);

    for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_input =
          input + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          T output_val = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              detail::PreCalc<T> pc = pre_calc[pre_calc_index];
              output_val += pc.w1 * offset_input[pc.pos1] +
                  pc.w2 * offset_input[pc.pos2] +
                  pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];

              pre_calc_index += 1;
            }
          }
          output_val /= count; // Average pooling

          output[index] = output_val;
        } // for pw
      } // for ph
    } // for c
  } // for n
}

template <typename T>
void bilinear_interpolate_gradient(
    int height,
    int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
    int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <class T>
inline void add(T* address, const T& val) {
  *address += val;
}

template <typename T>
void roi_align_backward_kernel_impl(
    int nthreads,
    const T* grad_output,
    const T& spatial_scale,
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
    T* grad_input,
    const T* rois,
    int n_stride,
    int c_stride,
    int h_stride,
    int w_stride) {
  for (int index = 0; index < nthreads; index++) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, (T)1.);
      roi_height = std::max(roi_height, (T)1.);
    }

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_grad_input =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    int output_offset = n * n_stride + c * c_stride;
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          // atomic add is not needed for now since it is single threaded
          add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
          add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
          add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
          add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // for
}

at::Tensor roi_align_forward_kernel(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
  TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
  TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "roi_align_forward_kernel";
  at::checkAllSameType(c, {input_t, rois_t});

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  if (output.numel() == 0)
    return output;

  auto input_ = input.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "roi_align_forward_kernel", [&] {
        roi_align_forward_kernel_impl<scalar_t>(
            num_rois,
            input_.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            rois_.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>());
      });
  return output;
}

at::Tensor roi_align_backward_kernel(
    const at::Tensor& grad,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width,
    int64_t sampling_ratio,
    bool aligned) {
  TORCH_CHECK(grad.device().is_cpu(), "grad must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "roi_align_backward_kernel";
  at::checkAllSameType(c, {grad_t, rois_t});

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    return grad_input;
  }

  // get stride values to ensure indexing into gradients is correct.
  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

  auto rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      grad.scalar_type(), "roi_align_backward_kernel", [&] {
        roi_align_backward_kernel_impl<scalar_t>(
            grad.numel(),
            grad.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            grad_input.data_ptr<scalar_t>(),
            rois_.data_ptr<scalar_t>(),
            n_stride,
            c_stride,
            h_stride,
            w_stride);
      });
  return grad_input;
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, CPU, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_align"),
      TORCH_FN(roi_align_forward_kernel));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
      TORCH_FN(roi_align_backward_kernel));
}

} // namespace ops
} // namespace vision