File: qroi_align_kernel.cpp

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (290 lines) | stat: -rw-r--r-- 10,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <ATen/ATen.h>
#include <torch/library.h>

#include "../../cpu/roi_align_common.h"

namespace vision {
namespace ops {

namespace {

// BEGIN copy-pasted code from pytorch core
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/quantized/affine_quantizer_base.cpp
// We're vendoring the quantize_val() and dequantize_val() functions here. The
// reason is that these functions belong in at::native, which is incompatible
// with android xplat support.

// FIXME: Remove this section once we can use at::native for android xplat
// builds, or when quantize_val() and dequantize_val() aren't in at::native

#ifdef USE_FBGEMM
template <typename T>
T quantize_val(double scale, int64_t zero_point, float value) {
  // Internally, fbgemm::Quantize uses std::nearbyint.
  // std::nearbyint results in nearest integer value according to the current
  // rounding mode and the default rounding mode is rounds to even in half-way
  // cases in most popular processor architectures like x86 and ARM. This is
  // typically faster than an alternatives like std::round that rounds half-way
  // cases away from zero, and can be consistent with SIMD implementations for
  // example in x86 using _mm512_cvtps_epi32 or mm512_round_ps with
  // _MM_FROUND_CUR_DIRECTION option that also follow the current rounding mode.
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int32_t qvalue;
  // NOLINTNEXTLINE(bugprone-signed-char-misuse)
  qvalue = fbgemm::Quantize<typename T::underlying, false /*LEGACY*/>(
      value,
      static_cast<int32_t>(zero_point),
      static_cast<float>(scale),
      /*result_precision=*/CHAR_BIT * sizeof(typename T::underlying));
  return static_cast<T>(qvalue);
}

template <typename T>
inline float dequantize_val(double scale, int64_t zero_point, T value) {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  fbgemm::TensorQuantizationParams qparams;
  qparams.scale = static_cast<float>(scale);
  qparams.zero_point = static_cast<int32_t>(zero_point);
  return fbgemm::Dequantize<typename T::underlying>(value.val_, qparams);
}
#else // USE_FBGEMM

#if defined(__ANDROID__) && !defined(__NDK_MAJOR__)
template <class T>
inline float Round(const float x) {
  return ::nearbyintf(x);
}
inline double Round(const double x) {
  return ::nearbyint(x);
}
#else
template <class T>
inline T Round(const T x) {
  return std::nearbyint(x);
}
#endif

template <typename T>
T quantize_val(double scale, int64_t zero_point, float value) {
  // std::nearbyint results in nearest integer value according to the current
  // rounding mode and the default rounding mode is rounds to even in half-way
  // cases in most popular processor architectures like x86 and ARM. This is
  // typically faster than an alternatives like std::round that rounds half-way
  // cases away from zero, and can be consistent with SIMD implementations for
  // example in x86 using _mm512_cvtps_epi32 or mm512_round_ps with
  // _MM_FROUND_CUR_DIRECTION option that also follow the current rounding mode.
  int64_t qvalue;
  constexpr int64_t qmin = std::numeric_limits<typename T::underlying>::min();
  constexpr int64_t qmax = std::numeric_limits<typename T::underlying>::max();
  float inv_scale = 1.0f / static_cast<float>(scale);
  qvalue = static_cast<int64_t>(zero_point + Round(value * inv_scale));
  qvalue = std::max<int64_t>(qvalue, qmin);
  qvalue = std::min<int64_t>(qvalue, qmax);
  return static_cast<T>(qvalue);
}

template <typename T>
float dequantize_val(double scale, int64_t zero_point, T value) {
  // We need to convert the qint8 value to float to ensure the subtraction
  // subexpression returns a float
  return (static_cast<float>(value.val_) - zero_point) * scale;
}
#endif // USE_FBGEMM
// END copy-pasted code from pytorch core

template <typename T>
void qroi_align_forward_kernel_impl(
    int n_rois,
    const at::Tensor& t_input,
    const float& spatial_scale,
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
    const at::Tensor& t_rois,
    T* output) {
  // Don't delete these otherwise the .data_ptr() data might be undefined
  auto t_input_cont = t_input.contiguous();
  auto t_rois_cont = t_rois.contiguous();

  const T* input = t_input_cont.data_ptr<T>();
  int64_t input_zp = t_input.q_zero_point();
  float input_scale = t_input.q_scale();

  const T* rois = t_rois_cont.data_ptr<T>();
  int64_t rois_zp = t_rois.q_zero_point();
  float rois_scale = t_rois.q_scale();

  for (int n = 0; n < n_rois; n++) {
    int index_n = n * channels * pooled_width * pooled_height;

    const T* offset_rois = rois + n * 5;

    // FIXME: change this when batches of size > 1 are allowed
    const int roi_batch_ind = 0;

    // Do not using rounding; this implementation detail is critical
    float offset = aligned ? 0.5 : 0.;
    float roi_start_w =
        dequantize_val(rois_scale, rois_zp, offset_rois[1]) * spatial_scale -
        offset;
    float roi_start_h =
        dequantize_val(rois_scale, rois_zp, offset_rois[2]) * spatial_scale -
        offset;
    float roi_end_w =
        dequantize_val(rois_scale, rois_zp, offset_rois[3]) * spatial_scale -
        offset;
    float roi_end_h =
        dequantize_val(rois_scale, rois_zp, offset_rois[4]) * spatial_scale -
        offset;

    float roi_width = roi_end_w - roi_start_w;
    float roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, 1.f);
      roi_height = std::max(roi_height, 1.f);
    }

    float bin_size_h = roi_height / pooled_height;
    float bin_size_w = roi_width / pooled_width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    // When the grid is empty, output zeros.
    const float count =
        std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4

    // we want to precalculate indices and weights shared by all channels,
    // this is the key point of optimization
    std::vector<detail::PreCalc<float>> pre_calc(
        roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
    detail::pre_calc_for_bilinear_interpolate(
        height,
        width,
        pooled_height,
        pooled_width,
        roi_start_h,
        roi_start_w,
        bin_size_h,
        bin_size_w,
        roi_bin_grid_h,
        roi_bin_grid_w,
        pre_calc);

    for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_input =
          input + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          float output_val = 0.;
          float sum_w = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              detail::PreCalc<float> pc = pre_calc[pre_calc_index];

              // Optimization: we use the raw values here and we'll dequantize
              // later
              output_val += pc.w1 * offset_input[pc.pos1].val_ +
                  pc.w2 * offset_input[pc.pos2].val_ +
                  pc.w3 * offset_input[pc.pos3].val_ +
                  pc.w4 * offset_input[pc.pos4].val_;
              sum_w += pc.w1 + pc.w2 + pc.w3 + pc.w4;

              pre_calc_index += 1;
            }
          }
          // Dequantize here
          output_val = input_scale * (output_val - (float)input_zp * sum_w);

          output_val /= count; // Average pooling

          output[index] = quantize_val<T>(input_scale, input_zp, output_val);
        } // for pw
      } // for ph
    } // for c
  } // for n
}

at::Tensor qroi_align_forward_kernel(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
  TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
  TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");
  // The first column of the RoI tensor is an image index, but not all indices
  // are representable depending on the quantization. For example 1, 3, 5...
  // indices can't be represented when qscale is 2. To prevent any bug, we force
  // a batch size of 1 and we ignore the first column
  TORCH_CHECK(
      input.size(0) == 1,
      "Only one image per batch is allowed in roi_align when quantized tensors are passed.");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "qroi_align_forward_kernel";
  at::checkAllSameType(c, {input_t, rois_t});

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  // FIXME: This is private, API might change:
  // https://github.com/pytorch/pytorch/wiki/Introducing-Quantized-Tensor#quantized-tensor-apis
  at::Tensor output = at::_empty_affine_quantized(
      {num_rois, channels, pooled_height, pooled_width},
      input.options(),
      input.q_scale(),
      input.q_zero_point());

  if (output.numel() == 0)
    return output;

  AT_DISPATCH_QINT_TYPES(input.scalar_type(), "qroi_align_forward_kernel", [&] {
    qroi_align_forward_kernel_impl<scalar_t>(
        num_rois,
        input,
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
        sampling_ratio,
        aligned,
        rois,
        output.data_ptr<scalar_t>());
  });
  return output;
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, QuantizedCPU, m) {
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_align"),
      TORCH_FN(qroi_align_forward_kernel));
}

} // namespace ops
} // namespace vision