1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
import os
import os.path
import pathlib
from typing import Any, Callable, Optional, Sequence, Tuple, Union
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
class OxfordIIITPet(VisionDataset):
"""`Oxford-IIIT Pet Dataset <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_.
Args:
root (str or ``pathlib.Path``): Root directory of the dataset.
split (string, optional): The dataset split, supports ``"trainval"`` (default) or ``"test"``.
target_types (string, sequence of strings, optional): Types of target to use. Can be ``category`` (default) or
``segmentation``. Can also be a list to output a tuple with all specified target types. The types represent:
- ``category`` (int): Label for one of the 37 pet categories.
- ``binary-category`` (int): Binary label for cat or dog.
- ``segmentation`` (PIL image): Segmentation trimap of the image.
If empty, ``None`` will be returned as target.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
download (bool, optional): If True, downloads the dataset from the internet and puts it into
``root/oxford-iiit-pet``. If dataset is already downloaded, it is not downloaded again.
"""
_RESOURCES = (
("https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz", "5c4f3ee8e5d25df40f4fd59a7f44e54c"),
("https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz", "95a8c909bbe2e81eed6a22bccdf3f68f"),
)
_VALID_TARGET_TYPES = ("category", "binary-category", "segmentation")
def __init__(
self,
root: Union[str, pathlib.Path],
split: str = "trainval",
target_types: Union[Sequence[str], str] = "category",
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
):
self._split = verify_str_arg(split, "split", ("trainval", "test"))
if isinstance(target_types, str):
target_types = [target_types]
self._target_types = [
verify_str_arg(target_type, "target_types", self._VALID_TARGET_TYPES) for target_type in target_types
]
super().__init__(root, transforms=transforms, transform=transform, target_transform=target_transform)
self._base_folder = pathlib.Path(self.root) / "oxford-iiit-pet"
self._images_folder = self._base_folder / "images"
self._anns_folder = self._base_folder / "annotations"
self._segs_folder = self._anns_folder / "trimaps"
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it")
image_ids = []
self._labels = []
self._bin_labels = []
with open(self._anns_folder / f"{self._split}.txt") as file:
for line in file:
image_id, label, bin_label, _ = line.strip().split()
image_ids.append(image_id)
self._labels.append(int(label) - 1)
self._bin_labels.append(int(bin_label) - 1)
self.bin_classes = ["Cat", "Dog"]
self.classes = [
" ".join(part.title() for part in raw_cls.split("_"))
for raw_cls, _ in sorted(
{(image_id.rsplit("_", 1)[0], label) for image_id, label in zip(image_ids, self._labels)},
key=lambda image_id_and_label: image_id_and_label[1],
)
]
self.bin_class_to_idx = dict(zip(self.bin_classes, range(len(self.bin_classes))))
self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
self._images = [self._images_folder / f"{image_id}.jpg" for image_id in image_ids]
self._segs = [self._segs_folder / f"{image_id}.png" for image_id in image_ids]
def __len__(self) -> int:
return len(self._images)
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image = Image.open(self._images[idx]).convert("RGB")
target: Any = []
for target_type in self._target_types:
if target_type == "category":
target.append(self._labels[idx])
elif target_type == "binary-category":
target.append(self._bin_labels[idx])
else: # target_type == "segmentation"
target.append(Image.open(self._segs[idx]))
if not target:
target = None
elif len(target) == 1:
target = target[0]
else:
target = tuple(target)
if self.transforms:
image, target = self.transforms(image, target)
return image, target
def _check_exists(self) -> bool:
for folder in (self._images_folder, self._anns_folder):
if not (os.path.exists(folder) and os.path.isdir(folder)):
return False
else:
return True
def _download(self) -> None:
if self._check_exists():
return
for url, md5 in self._RESOURCES:
download_and_extract_archive(url, download_root=str(self._base_folder), md5=md5)
|