1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
import torchvision
from torch import nn, Tensor
from torchvision.ops import boxes as box_ops, roi_align
from . import _utils as det_utils
def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
# type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
"""
Computes the loss for Faster R-CNN.
Args:
class_logits (Tensor)
box_regression (Tensor)
labels (list[BoxList])
regression_targets (Tensor)
Returns:
classification_loss (Tensor)
box_loss (Tensor)
"""
labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0)
classification_loss = F.cross_entropy(class_logits, labels)
# get indices that correspond to the regression targets for
# the corresponding ground truth labels, to be used with
# advanced indexing
sampled_pos_inds_subset = torch.where(labels > 0)[0]
labels_pos = labels[sampled_pos_inds_subset]
N, num_classes = class_logits.shape
box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4)
box_loss = F.smooth_l1_loss(
box_regression[sampled_pos_inds_subset, labels_pos],
regression_targets[sampled_pos_inds_subset],
beta=1 / 9,
reduction="sum",
)
box_loss = box_loss / labels.numel()
return classification_loss, box_loss
def maskrcnn_inference(x, labels):
# type: (Tensor, List[Tensor]) -> List[Tensor]
"""
From the results of the CNN, post process the masks
by taking the mask corresponding to the class with max
probability (which are of fixed size and directly output
by the CNN) and return the masks in the mask field of the BoxList.
Args:
x (Tensor): the mask logits
labels (list[BoxList]): bounding boxes that are used as
reference, one for ech image
Returns:
results (list[BoxList]): one BoxList for each image, containing
the extra field mask
"""
mask_prob = x.sigmoid()
# select masks corresponding to the predicted classes
num_masks = x.shape[0]
boxes_per_image = [label.shape[0] for label in labels]
labels = torch.cat(labels)
index = torch.arange(num_masks, device=labels.device)
mask_prob = mask_prob[index, labels][:, None]
mask_prob = mask_prob.split(boxes_per_image, dim=0)
return mask_prob
def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
# type: (Tensor, Tensor, Tensor, int) -> Tensor
"""
Given segmentation masks and the bounding boxes corresponding
to the location of the masks in the image, this function
crops and resizes the masks in the position defined by the
boxes. This prepares the masks for them to be fed to the
loss computation as the targets.
"""
matched_idxs = matched_idxs.to(boxes)
rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
gt_masks = gt_masks[:, None].to(rois)
return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0]
def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
"""
Args:
proposals (list[BoxList])
mask_logits (Tensor)
targets (list[BoxList])
Return:
mask_loss (Tensor): scalar tensor containing the loss
"""
discretization_size = mask_logits.shape[-1]
labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
mask_targets = [
project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
]
labels = torch.cat(labels, dim=0)
mask_targets = torch.cat(mask_targets, dim=0)
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it separately
if mask_targets.numel() == 0:
return mask_logits.sum() * 0
mask_loss = F.binary_cross_entropy_with_logits(
mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
)
return mask_loss
def keypoints_to_heatmap(keypoints, rois, heatmap_size):
# type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
offset_x = offset_x[:, None]
offset_y = offset_y[:, None]
scale_x = scale_x[:, None]
scale_y = scale_y[:, None]
x = keypoints[..., 0]
y = keypoints[..., 1]
x_boundary_inds = x == rois[:, 2][:, None]
y_boundary_inds = y == rois[:, 3][:, None]
x = (x - offset_x) * scale_x
x = x.floor().long()
y = (y - offset_y) * scale_y
y = y.floor().long()
x[x_boundary_inds] = heatmap_size - 1
y[y_boundary_inds] = heatmap_size - 1
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
vis = keypoints[..., 2] > 0
valid = (valid_loc & vis).long()
lin_ind = y * heatmap_size + x
heatmaps = lin_ind * valid
return heatmaps, valid
def _onnx_heatmaps_to_keypoints(
maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i
):
num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)
width_correction = widths_i / roi_map_width
height_correction = heights_i / roi_map_height
roi_map = F.interpolate(
maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False
)[:, 0]
w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
x_int = pos % w
y_int = (pos - x_int) // w
x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to(
dtype=torch.float32
)
y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to(
dtype=torch.float32
)
xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32)
xy_preds_i = torch.stack(
[
xy_preds_i_0.to(dtype=torch.float32),
xy_preds_i_1.to(dtype=torch.float32),
xy_preds_i_2.to(dtype=torch.float32),
],
0,
)
# TODO: simplify when indexing without rank will be supported by ONNX
base = num_keypoints * num_keypoints + num_keypoints + 1
ind = torch.arange(num_keypoints)
ind = ind.to(dtype=torch.int64) * base
end_scores_i = (
roi_map.index_select(1, y_int.to(dtype=torch.int64))
.index_select(2, x_int.to(dtype=torch.int64))
.view(-1)
.index_select(0, ind.to(dtype=torch.int64))
)
return xy_preds_i, end_scores_i
@torch.jit._script_if_tracing
def _onnx_heatmaps_to_keypoints_loop(
maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints
):
xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)
for i in range(int(rois.size(0))):
xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(
maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i]
)
xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
end_scores = torch.cat(
(end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0
)
return xy_preds, end_scores
def heatmaps_to_keypoints(maps, rois):
"""Extract predicted keypoint locations from heatmaps. Output has shape
(#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
for each keypoint.
"""
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
# consistency with keypoints_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = widths.clamp(min=1)
heights = heights.clamp(min=1)
widths_ceil = widths.ceil()
heights_ceil = heights.ceil()
num_keypoints = maps.shape[1]
if torchvision._is_tracing():
xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(
maps,
rois,
widths_ceil,
heights_ceil,
widths,
heights,
offset_x,
offset_y,
torch.scalar_tensor(num_keypoints, dtype=torch.int64),
)
return xy_preds.permute(0, 2, 1), end_scores
xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
for i in range(len(rois)):
roi_map_width = int(widths_ceil[i].item())
roi_map_height = int(heights_ceil[i].item())
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = F.interpolate(
maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False
)[:, 0]
# roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
x_int = pos % w
y_int = torch.div(pos - x_int, w, rounding_mode="floor")
# assert (roi_map_probs[k, y_int, x_int] ==
# roi_map_probs[k, :, :].max())
x = (x_int.float() + 0.5) * width_correction
y = (y_int.float() + 0.5) * height_correction
xy_preds[i, 0, :] = x + offset_x[i]
xy_preds[i, 1, :] = y + offset_y[i]
xy_preds[i, 2, :] = 1
end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int]
return xy_preds.permute(0, 2, 1), end_scores
def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
N, K, H, W = keypoint_logits.shape
if H != W:
raise ValueError(
f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
)
discretization_size = H
heatmaps = []
valid = []
for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
kp = gt_kp_in_image[midx]
heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size)
heatmaps.append(heatmaps_per_image.view(-1))
valid.append(valid_per_image.view(-1))
keypoint_targets = torch.cat(heatmaps, dim=0)
valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
valid = torch.where(valid)[0]
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it sepaartely
if keypoint_targets.numel() == 0 or len(valid) == 0:
return keypoint_logits.sum() * 0
keypoint_logits = keypoint_logits.view(N * K, H * W)
keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
return keypoint_loss
def keypointrcnn_inference(x, boxes):
# type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
kp_probs = []
kp_scores = []
boxes_per_image = [box.size(0) for box in boxes]
x2 = x.split(boxes_per_image, dim=0)
for xx, bb in zip(x2, boxes):
kp_prob, scores = heatmaps_to_keypoints(xx, bb)
kp_probs.append(kp_prob)
kp_scores.append(scores)
return kp_probs, kp_scores
def _onnx_expand_boxes(boxes, scale):
# type: (Tensor, float) -> Tensor
w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
w_half = w_half.to(dtype=torch.float32) * scale
h_half = h_half.to(dtype=torch.float32) * scale
boxes_exp0 = x_c - w_half
boxes_exp1 = y_c - h_half
boxes_exp2 = x_c + w_half
boxes_exp3 = y_c + h_half
boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
return boxes_exp
# the next two functions should be merged inside Masker
# but are kept here for the moment while we need them
# temporarily for paste_mask_in_image
def expand_boxes(boxes, scale):
# type: (Tensor, float) -> Tensor
if torchvision._is_tracing():
return _onnx_expand_boxes(boxes, scale)
w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
w_half *= scale
h_half *= scale
boxes_exp = torch.zeros_like(boxes)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
@torch.jit.unused
def expand_masks_tracing_scale(M, padding):
# type: (int, int) -> float
return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)
def expand_masks(mask, padding):
# type: (Tensor, int) -> Tuple[Tensor, float]
M = mask.shape[-1]
if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why
scale = expand_masks_tracing_scale(M, padding)
else:
scale = float(M + 2 * padding) / M
padded_mask = F.pad(mask, (padding,) * 4)
return padded_mask, scale
def paste_mask_in_image(mask, box, im_h, im_w):
# type: (Tensor, Tensor, int, int) -> Tensor
TO_REMOVE = 1
w = int(box[2] - box[0] + TO_REMOVE)
h = int(box[3] - box[1] + TO_REMOVE)
w = max(w, 1)
h = max(h, 1)
# Set shape to [batchxCxHxW]
mask = mask.expand((1, 1, -1, -1))
# Resize mask
mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False)
mask = mask[0][0]
im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
x_0 = max(box[0], 0)
x_1 = min(box[2] + 1, im_w)
y_0 = max(box[1], 0)
y_1 = min(box[3] + 1, im_h)
im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
return im_mask
def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
one = torch.ones(1, dtype=torch.int64)
zero = torch.zeros(1, dtype=torch.int64)
w = box[2] - box[0] + one
h = box[3] - box[1] + one
w = torch.max(torch.cat((w, one)))
h = torch.max(torch.cat((h, one)))
# Set shape to [batchxCxHxW]
mask = mask.expand((1, 1, mask.size(0), mask.size(1)))
# Resize mask
mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False)
mask = mask[0][0]
x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))
unpaded_im_mask = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
# TODO : replace below with a dynamic padding when support is added in ONNX
# pad y
zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :]
# pad x
zeros_x0 = torch.zeros(concat_0.size(0), x_0)
zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w]
return im_mask
@torch.jit._script_if_tracing
def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
res_append = torch.zeros(0, im_h, im_w)
for i in range(masks.size(0)):
mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
mask_res = mask_res.unsqueeze(0)
res_append = torch.cat((res_append, mask_res))
return res_append
def paste_masks_in_image(masks, boxes, img_shape, padding=1):
# type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
masks, scale = expand_masks(masks, padding=padding)
boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
im_h, im_w = img_shape
if torchvision._is_tracing():
return _onnx_paste_masks_in_image_loop(
masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64)
)[:, None]
res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)]
if len(res) > 0:
ret = torch.stack(res, dim=0)[:, None]
else:
ret = masks.new_empty((0, 1, im_h, im_w))
return ret
class RoIHeads(nn.Module):
__annotations__ = {
"box_coder": det_utils.BoxCoder,
"proposal_matcher": det_utils.Matcher,
"fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
}
def __init__(
self,
box_roi_pool,
box_head,
box_predictor,
# Faster R-CNN training
fg_iou_thresh,
bg_iou_thresh,
batch_size_per_image,
positive_fraction,
bbox_reg_weights,
# Faster R-CNN inference
score_thresh,
nms_thresh,
detections_per_img,
# Mask
mask_roi_pool=None,
mask_head=None,
mask_predictor=None,
keypoint_roi_pool=None,
keypoint_head=None,
keypoint_predictor=None,
):
super().__init__()
self.box_similarity = box_ops.box_iou
# assign ground-truth boxes for each proposal
self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False)
self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
if bbox_reg_weights is None:
bbox_reg_weights = (10.0, 10.0, 5.0, 5.0)
self.box_coder = det_utils.BoxCoder(bbox_reg_weights)
self.box_roi_pool = box_roi_pool
self.box_head = box_head
self.box_predictor = box_predictor
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.mask_roi_pool = mask_roi_pool
self.mask_head = mask_head
self.mask_predictor = mask_predictor
self.keypoint_roi_pool = keypoint_roi_pool
self.keypoint_head = keypoint_head
self.keypoint_predictor = keypoint_predictor
def has_mask(self):
if self.mask_roi_pool is None:
return False
if self.mask_head is None:
return False
if self.mask_predictor is None:
return False
return True
def has_keypoint(self):
if self.keypoint_roi_pool is None:
return False
if self.keypoint_head is None:
return False
if self.keypoint_predictor is None:
return False
return True
def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
# type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
matched_idxs = []
labels = []
for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):
if gt_boxes_in_image.numel() == 0:
# Background image
device = proposals_in_image.device
clamped_matched_idxs_in_image = torch.zeros(
(proposals_in_image.shape[0],), dtype=torch.int64, device=device
)
labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device)
else:
# set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)
clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)
labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
labels_in_image = labels_in_image.to(dtype=torch.int64)
# Label background (below the low threshold)
bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
labels_in_image[bg_inds] = 0
# Label ignore proposals (between low and high thresholds)
ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler
matched_idxs.append(clamped_matched_idxs_in_image)
labels.append(labels_in_image)
return matched_idxs, labels
def subsample(self, labels):
# type: (List[Tensor]) -> List[Tensor]
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_inds = []
for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)):
img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0]
sampled_inds.append(img_sampled_inds)
return sampled_inds
def add_gt_proposals(self, proposals, gt_boxes):
# type: (List[Tensor], List[Tensor]) -> List[Tensor]
proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]
return proposals
def check_targets(self, targets):
# type: (Optional[List[Dict[str, Tensor]]]) -> None
if targets is None:
raise ValueError("targets should not be None")
if not all(["boxes" in t for t in targets]):
raise ValueError("Every element of targets should have a boxes key")
if not all(["labels" in t for t in targets]):
raise ValueError("Every element of targets should have a labels key")
if self.has_mask():
if not all(["masks" in t for t in targets]):
raise ValueError("Every element of targets should have a masks key")
def select_training_samples(
self,
proposals, # type: List[Tensor]
targets, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
self.check_targets(targets)
if targets is None:
raise ValueError("targets should not be None")
dtype = proposals[0].dtype
device = proposals[0].device
gt_boxes = [t["boxes"].to(dtype) for t in targets]
gt_labels = [t["labels"] for t in targets]
# append ground-truth bboxes to propos
proposals = self.add_gt_proposals(proposals, gt_boxes)
# get matching gt indices for each proposal
matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
# sample a fixed proportion of positive-negative proposals
sampled_inds = self.subsample(labels)
matched_gt_boxes = []
num_images = len(proposals)
for img_id in range(num_images):
img_sampled_inds = sampled_inds[img_id]
proposals[img_id] = proposals[img_id][img_sampled_inds]
labels[img_id] = labels[img_id][img_sampled_inds]
matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
gt_boxes_in_image = gt_boxes[img_id]
if gt_boxes_in_image.numel() == 0:
gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
return proposals, matched_idxs, labels, regression_targets
def postprocess_detections(
self,
class_logits, # type: Tensor
box_regression, # type: Tensor
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
device = class_logits.device
num_classes = class_logits.shape[-1]
boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
pred_boxes = self.box_coder.decode(box_regression, proposals)
pred_scores = F.softmax(class_logits, -1)
pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
pred_scores_list = pred_scores.split(boxes_per_image, 0)
all_boxes = []
all_scores = []
all_labels = []
for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
# create labels for each prediction
labels = torch.arange(num_classes, device=device)
labels = labels.view(1, -1).expand_as(scores)
# remove predictions with the background label
boxes = boxes[:, 1:]
scores = scores[:, 1:]
labels = labels[:, 1:]
# batch everything, by making every class prediction be a separate instance
boxes = boxes.reshape(-1, 4)
scores = scores.reshape(-1)
labels = labels.reshape(-1)
# remove low scoring boxes
inds = torch.where(scores > self.score_thresh)[0]
boxes, scores, labels = boxes[inds], scores[inds], labels[inds]
# remove empty boxes
keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
# non-maximum suppression, independently done per class
keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
# keep only topk scoring predictions
keep = keep[: self.detections_per_img]
boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
all_boxes.append(boxes)
all_scores.append(scores)
all_labels.append(labels)
return all_boxes, all_scores, all_labels
def forward(
self,
features, # type: Dict[str, Tensor]
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
targets=None, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
"""
Args:
features (List[Tensor])
proposals (List[Tensor[N, 4]])
image_shapes (List[Tuple[H, W]])
targets (List[Dict])
"""
if targets is not None:
for t in targets:
# TODO: https://github.com/pytorch/pytorch/issues/26731
floating_point_types = (torch.float, torch.double, torch.half)
if not t["boxes"].dtype in floating_point_types:
raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}")
if not t["labels"].dtype == torch.int64:
raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}")
if self.has_keypoint():
if not t["keypoints"].dtype == torch.float32:
raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}")
if self.training:
proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
else:
labels = None
regression_targets = None
matched_idxs = None
box_features = self.box_roi_pool(features, proposals, image_shapes)
box_features = self.box_head(box_features)
class_logits, box_regression = self.box_predictor(box_features)
result: List[Dict[str, torch.Tensor]] = []
losses = {}
if self.training:
if labels is None:
raise ValueError("labels cannot be None")
if regression_targets is None:
raise ValueError("regression_targets cannot be None")
loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
else:
boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
num_images = len(boxes)
for i in range(num_images):
result.append(
{
"boxes": boxes[i],
"labels": labels[i],
"scores": scores[i],
}
)
if self.has_mask():
mask_proposals = [p["boxes"] for p in result]
if self.training:
if matched_idxs is None:
raise ValueError("if in training, matched_idxs should not be None")
# during training, only focus on positive boxes
num_images = len(proposals)
mask_proposals = []
pos_matched_idxs = []
for img_id in range(num_images):
pos = torch.where(labels[img_id] > 0)[0]
mask_proposals.append(proposals[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
else:
pos_matched_idxs = None
if self.mask_roi_pool is not None:
mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
mask_features = self.mask_head(mask_features)
mask_logits = self.mask_predictor(mask_features)
else:
raise Exception("Expected mask_roi_pool to be not None")
loss_mask = {}
if self.training:
if targets is None or pos_matched_idxs is None or mask_logits is None:
raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training")
gt_masks = [t["masks"] for t in targets]
gt_labels = [t["labels"] for t in targets]
rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs)
loss_mask = {"loss_mask": rcnn_loss_mask}
else:
labels = [r["labels"] for r in result]
masks_probs = maskrcnn_inference(mask_logits, labels)
for mask_prob, r in zip(masks_probs, result):
r["masks"] = mask_prob
losses.update(loss_mask)
# keep none checks in if conditional so torchscript will conditionally
# compile each branch
if (
self.keypoint_roi_pool is not None
and self.keypoint_head is not None
and self.keypoint_predictor is not None
):
keypoint_proposals = [p["boxes"] for p in result]
if self.training:
# during training, only focus on positive boxes
num_images = len(proposals)
keypoint_proposals = []
pos_matched_idxs = []
if matched_idxs is None:
raise ValueError("if in trainning, matched_idxs should not be None")
for img_id in range(num_images):
pos = torch.where(labels[img_id] > 0)[0]
keypoint_proposals.append(proposals[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
else:
pos_matched_idxs = None
keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes)
keypoint_features = self.keypoint_head(keypoint_features)
keypoint_logits = self.keypoint_predictor(keypoint_features)
loss_keypoint = {}
if self.training:
if targets is None or pos_matched_idxs is None:
raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
gt_keypoints = [t["keypoints"] for t in targets]
rcnn_loss_keypoint = keypointrcnn_loss(
keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs
)
loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint}
else:
if keypoint_logits is None or keypoint_proposals is None:
raise ValueError(
"both keypoint_logits and keypoint_proposals should not be None when not in training mode"
)
keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
r["keypoints"] = keypoint_prob
r["keypoints_scores"] = kps
losses.update(loss_keypoint)
return result, losses
|