1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
import math
from typing import Any, Dict, List, Optional, Tuple
import torch
import torchvision
from torch import nn, Tensor
from .image_list import ImageList
from .roi_heads import paste_masks_in_image
@torch.jit.unused
def _get_shape_onnx(image: Tensor) -> Tensor:
from torch.onnx import operators
return operators.shape_as_tensor(image)[-2:]
@torch.jit.unused
def _fake_cast_onnx(v: Tensor) -> float:
# ONNX requires a tensor but here we fake its type for JIT.
return v
def _resize_image_and_masks(
image: Tensor,
self_min_size: int,
self_max_size: int,
target: Optional[Dict[str, Tensor]] = None,
fixed_size: Optional[Tuple[int, int]] = None,
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if torchvision._is_tracing():
im_shape = _get_shape_onnx(image)
elif torch.jit.is_scripting():
im_shape = torch.tensor(image.shape[-2:])
else:
im_shape = image.shape[-2:]
size: Optional[List[int]] = None
scale_factor: Optional[float] = None
recompute_scale_factor: Optional[bool] = None
if fixed_size is not None:
size = [fixed_size[1], fixed_size[0]]
else:
if torch.jit.is_scripting() or torchvision._is_tracing():
min_size = torch.min(im_shape).to(dtype=torch.float32)
max_size = torch.max(im_shape).to(dtype=torch.float32)
self_min_size_f = float(self_min_size)
self_max_size_f = float(self_max_size)
scale = torch.min(self_min_size_f / min_size, self_max_size_f / max_size)
if torchvision._is_tracing():
scale_factor = _fake_cast_onnx(scale)
else:
scale_factor = scale.item()
else:
# Do it the normal way
min_size = min(im_shape)
max_size = max(im_shape)
scale_factor = min(self_min_size / min_size, self_max_size / max_size)
recompute_scale_factor = True
image = torch.nn.functional.interpolate(
image[None],
size=size,
scale_factor=scale_factor,
mode="bilinear",
recompute_scale_factor=recompute_scale_factor,
align_corners=False,
)[0]
if target is None:
return image, target
if "masks" in target:
mask = target["masks"]
mask = torch.nn.functional.interpolate(
mask[:, None].float(), size=size, scale_factor=scale_factor, recompute_scale_factor=recompute_scale_factor
)[:, 0].byte()
target["masks"] = mask
return image, target
class GeneralizedRCNNTransform(nn.Module):
"""
Performs input / target transformation before feeding the data to a GeneralizedRCNN
model.
The transformations it performs are:
- input normalization (mean subtraction and std division)
- input / target resizing to match min_size / max_size
It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets
"""
def __init__(
self,
min_size: int,
max_size: int,
image_mean: List[float],
image_std: List[float],
size_divisible: int = 32,
fixed_size: Optional[Tuple[int, int]] = None,
**kwargs: Any,
):
super().__init__()
if not isinstance(min_size, (list, tuple)):
min_size = (min_size,)
self.min_size = min_size
self.max_size = max_size
self.image_mean = image_mean
self.image_std = image_std
self.size_divisible = size_divisible
self.fixed_size = fixed_size
self._skip_resize = kwargs.pop("_skip_resize", False)
def forward(
self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]]:
images = [img for img in images]
if targets is not None:
# make a copy of targets to avoid modifying it in-place
# once torchscript supports dict comprehension
# this can be simplified as follows
# targets = [{k: v for k,v in t.items()} for t in targets]
targets_copy: List[Dict[str, Tensor]] = []
for t in targets:
data: Dict[str, Tensor] = {}
for k, v in t.items():
data[k] = v
targets_copy.append(data)
targets = targets_copy
for i in range(len(images)):
image = images[i]
target_index = targets[i] if targets is not None else None
if image.dim() != 3:
raise ValueError(f"images is expected to be a list of 3d tensors of shape [C, H, W], got {image.shape}")
image = self.normalize(image)
image, target_index = self.resize(image, target_index)
images[i] = image
if targets is not None and target_index is not None:
targets[i] = target_index
image_sizes = [img.shape[-2:] for img in images]
images = self.batch_images(images, size_divisible=self.size_divisible)
image_sizes_list: List[Tuple[int, int]] = []
for image_size in image_sizes:
torch._assert(
len(image_size) == 2,
f"Input tensors expected to have in the last two elements H and W, instead got {image_size}",
)
image_sizes_list.append((image_size[0], image_size[1]))
image_list = ImageList(images, image_sizes_list)
return image_list, targets
def normalize(self, image: Tensor) -> Tensor:
if not image.is_floating_point():
raise TypeError(
f"Expected input images to be of floating type (in range [0, 1]), "
f"but found type {image.dtype} instead"
)
dtype, device = image.dtype, image.device
mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device)
std = torch.as_tensor(self.image_std, dtype=dtype, device=device)
return (image - mean[:, None, None]) / std[:, None, None]
def torch_choice(self, k: List[int]) -> int:
"""
Implements `random.choice` via torch ops, so it can be compiled with
TorchScript and we use PyTorch's RNG (not native RNG)
"""
index = int(torch.empty(1).uniform_(0.0, float(len(k))).item())
return k[index]
def resize(
self,
image: Tensor,
target: Optional[Dict[str, Tensor]] = None,
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
h, w = image.shape[-2:]
if self.training:
if self._skip_resize:
return image, target
size = self.torch_choice(self.min_size)
else:
size = self.min_size[-1]
image, target = _resize_image_and_masks(image, size, self.max_size, target, self.fixed_size)
if target is None:
return image, target
bbox = target["boxes"]
bbox = resize_boxes(bbox, (h, w), image.shape[-2:])
target["boxes"] = bbox
if "keypoints" in target:
keypoints = target["keypoints"]
keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:])
target["keypoints"] = keypoints
return image, target
# _onnx_batch_images() is an implementation of
# batch_images() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor:
max_size = []
for i in range(images[0].dim()):
max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64)
max_size.append(max_size_i)
stride = size_divisible
max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64)
max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# which is not yet supported in onnx
padded_imgs = []
for img in images:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
return torch.stack(padded_imgs)
def max_by_axis(self, the_list: List[List[int]]) -> List[int]:
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor:
if torchvision._is_tracing():
# batch_images() does not export well to ONNX
# call _onnx_batch_images() instead
return self._onnx_batch_images(images, size_divisible)
max_size = self.max_by_axis([list(img.shape) for img in images])
stride = float(size_divisible)
max_size = list(max_size)
max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride)
max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride)
batch_shape = [len(images)] + max_size
batched_imgs = images[0].new_full(batch_shape, 0)
for i in range(batched_imgs.shape[0]):
img = images[i]
batched_imgs[i, : img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
return batched_imgs
def postprocess(
self,
result: List[Dict[str, Tensor]],
image_shapes: List[Tuple[int, int]],
original_image_sizes: List[Tuple[int, int]],
) -> List[Dict[str, Tensor]]:
if self.training:
return result
for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)):
boxes = pred["boxes"]
boxes = resize_boxes(boxes, im_s, o_im_s)
result[i]["boxes"] = boxes
if "masks" in pred:
masks = pred["masks"]
masks = paste_masks_in_image(masks, boxes, o_im_s)
result[i]["masks"] = masks
if "keypoints" in pred:
keypoints = pred["keypoints"]
keypoints = resize_keypoints(keypoints, im_s, o_im_s)
result[i]["keypoints"] = keypoints
return result
def __repr__(self) -> str:
format_string = f"{self.__class__.__name__}("
_indent = "\n "
format_string += f"{_indent}Normalize(mean={self.image_mean}, std={self.image_std})"
format_string += f"{_indent}Resize(min_size={self.min_size}, max_size={self.max_size}, mode='bilinear')"
format_string += "\n)"
return format_string
def resize_keypoints(keypoints: Tensor, original_size: List[int], new_size: List[int]) -> Tensor:
ratios = [
torch.tensor(s, dtype=torch.float32, device=keypoints.device)
/ torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device)
for s, s_orig in zip(new_size, original_size)
]
ratio_h, ratio_w = ratios
resized_data = keypoints.clone()
if torch._C._get_tracing_state():
resized_data_0 = resized_data[:, :, 0] * ratio_w
resized_data_1 = resized_data[:, :, 1] * ratio_h
resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2)
else:
resized_data[..., 0] *= ratio_w
resized_data[..., 1] *= ratio_h
return resized_data
def resize_boxes(boxes: Tensor, original_size: List[int], new_size: List[int]) -> Tensor:
ratios = [
torch.tensor(s, dtype=torch.float32, device=boxes.device)
/ torch.tensor(s_orig, dtype=torch.float32, device=boxes.device)
for s, s_orig in zip(new_size, original_size)
]
ratio_height, ratio_width = ratios
xmin, ymin, xmax, ymax = boxes.unbind(1)
xmin = xmin * ratio_width
xmax = xmax * ratio_width
ymin = ymin * ratio_height
ymax = ymax * ratio_height
return torch.stack((xmin, ymin, xmax, ymax), dim=1)
|