File: swin_transformer.py

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (743 lines) | stat: -rw-r--r-- 27,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# Modified from 2d Swin Transformers in torchvision:
# https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py

from functools import partial
from typing import Any, Callable, List, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ...transforms._presets import VideoClassification

from ...utils import _log_api_usage_once

from .._api import register_model, Weights, WeightsEnum

from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from ..swin_transformer import PatchMerging, SwinTransformerBlock

__all__ = [
    "SwinTransformer3d",
    "Swin3D_T_Weights",
    "Swin3D_S_Weights",
    "Swin3D_B_Weights",
    "swin3d_t",
    "swin3d_s",
    "swin3d_b",
]


def _get_window_and_shift_size(
    shift_size: List[int], size_dhw: List[int], window_size: List[int]
) -> Tuple[List[int], List[int]]:
    for i in range(3):
        if size_dhw[i] <= window_size[i]:
            # In this case, window_size will adapt to the input size, and no need to shift
            window_size[i] = size_dhw[i]
            shift_size[i] = 0

    return window_size, shift_size


torch.fx.wrap("_get_window_and_shift_size")


def _get_relative_position_bias(
    relative_position_bias_table: torch.Tensor, relative_position_index: torch.Tensor, window_size: List[int]
) -> Tensor:
    window_vol = window_size[0] * window_size[1] * window_size[2]
    # In 3d case we flatten the relative_position_bias
    relative_position_bias = relative_position_bias_table[
        relative_position_index[:window_vol, :window_vol].flatten()  # type: ignore[index]
    ]
    relative_position_bias = relative_position_bias.view(window_vol, window_vol, -1)
    relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0)
    return relative_position_bias


torch.fx.wrap("_get_relative_position_bias")


def _compute_pad_size_3d(size_dhw: Tuple[int, int, int], patch_size: Tuple[int, int, int]) -> Tuple[int, int, int]:
    pad_size = [(patch_size[i] - size_dhw[i] % patch_size[i]) % patch_size[i] for i in range(3)]
    return pad_size[0], pad_size[1], pad_size[2]


torch.fx.wrap("_compute_pad_size_3d")


def _compute_attention_mask_3d(
    x: Tensor,
    size_dhw: Tuple[int, int, int],
    window_size: Tuple[int, int, int],
    shift_size: Tuple[int, int, int],
) -> Tensor:
    # generate attention mask
    attn_mask = x.new_zeros(*size_dhw)
    num_windows = (size_dhw[0] // window_size[0]) * (size_dhw[1] // window_size[1]) * (size_dhw[2] // window_size[2])
    slices = [
        (
            (0, -window_size[i]),
            (-window_size[i], -shift_size[i]),
            (-shift_size[i], None),
        )
        for i in range(3)
    ]
    count = 0
    for d in slices[0]:
        for h in slices[1]:
            for w in slices[2]:
                attn_mask[d[0] : d[1], h[0] : h[1], w[0] : w[1]] = count
                count += 1

    # Partition window on attn_mask
    attn_mask = attn_mask.view(
        size_dhw[0] // window_size[0],
        window_size[0],
        size_dhw[1] // window_size[1],
        window_size[1],
        size_dhw[2] // window_size[2],
        window_size[2],
    )
    attn_mask = attn_mask.permute(0, 2, 4, 1, 3, 5).reshape(
        num_windows, window_size[0] * window_size[1] * window_size[2]
    )
    attn_mask = attn_mask.unsqueeze(1) - attn_mask.unsqueeze(2)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
    return attn_mask


torch.fx.wrap("_compute_attention_mask_3d")


def shifted_window_attention_3d(
    input: Tensor,
    qkv_weight: Tensor,
    proj_weight: Tensor,
    relative_position_bias: Tensor,
    window_size: List[int],
    num_heads: int,
    shift_size: List[int],
    attention_dropout: float = 0.0,
    dropout: float = 0.0,
    qkv_bias: Optional[Tensor] = None,
    proj_bias: Optional[Tensor] = None,
    training: bool = True,
) -> Tensor:
    """
    Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        input (Tensor[B, T, H, W, C]): The input tensor, 5-dimensions.
        qkv_weight (Tensor[in_dim, out_dim]): The weight tensor of query, key, value.
        proj_weight (Tensor[out_dim, out_dim]): The weight tensor of projection.
        relative_position_bias (Tensor): The learned relative position bias added to attention.
        window_size (List[int]): 3-dimensions window size, T, H, W .
        num_heads (int): Number of attention heads.
        shift_size (List[int]): Shift size for shifted window attention (T, H, W).
        attention_dropout (float): Dropout ratio of attention weight. Default: 0.0.
        dropout (float): Dropout ratio of output. Default: 0.0.
        qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
        proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
        training (bool, optional): Training flag used by the dropout parameters. Default: True.
    Returns:
        Tensor[B, T, H, W, C]: The output tensor after shifted window attention.
    """
    b, t, h, w, c = input.shape
    # pad feature maps to multiples of window size
    pad_size = _compute_pad_size_3d((t, h, w), (window_size[0], window_size[1], window_size[2]))
    x = F.pad(input, (0, 0, 0, pad_size[2], 0, pad_size[1], 0, pad_size[0]))
    _, tp, hp, wp, _ = x.shape
    padded_size = (tp, hp, wp)

    # cyclic shift
    if sum(shift_size) > 0:
        x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))

    # partition windows
    num_windows = (
        (padded_size[0] // window_size[0]) * (padded_size[1] // window_size[1]) * (padded_size[2] // window_size[2])
    )
    x = x.view(
        b,
        padded_size[0] // window_size[0],
        window_size[0],
        padded_size[1] // window_size[1],
        window_size[1],
        padded_size[2] // window_size[2],
        window_size[2],
        c,
    )
    x = x.permute(0, 1, 3, 5, 2, 4, 6, 7).reshape(
        b * num_windows, window_size[0] * window_size[1] * window_size[2], c
    )  # B*nW, Wd*Wh*Ww, C

    # multi-head attention
    qkv = F.linear(x, qkv_weight, qkv_bias)
    qkv = qkv.reshape(x.size(0), x.size(1), 3, num_heads, c // num_heads).permute(2, 0, 3, 1, 4)
    q, k, v = qkv[0], qkv[1], qkv[2]
    q = q * (c // num_heads) ** -0.5
    attn = q.matmul(k.transpose(-2, -1))
    # add relative position bias
    attn = attn + relative_position_bias

    if sum(shift_size) > 0:
        # generate attention mask to handle shifted windows with varying size
        attn_mask = _compute_attention_mask_3d(
            x,
            (padded_size[0], padded_size[1], padded_size[2]),
            (window_size[0], window_size[1], window_size[2]),
            (shift_size[0], shift_size[1], shift_size[2]),
        )
        attn = attn.view(x.size(0) // num_windows, num_windows, num_heads, x.size(1), x.size(1))
        attn = attn + attn_mask.unsqueeze(1).unsqueeze(0)
        attn = attn.view(-1, num_heads, x.size(1), x.size(1))

    attn = F.softmax(attn, dim=-1)
    attn = F.dropout(attn, p=attention_dropout, training=training)

    x = attn.matmul(v).transpose(1, 2).reshape(x.size(0), x.size(1), c)
    x = F.linear(x, proj_weight, proj_bias)
    x = F.dropout(x, p=dropout, training=training)

    # reverse windows
    x = x.view(
        b,
        padded_size[0] // window_size[0],
        padded_size[1] // window_size[1],
        padded_size[2] // window_size[2],
        window_size[0],
        window_size[1],
        window_size[2],
        c,
    )
    x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).reshape(b, tp, hp, wp, c)

    # reverse cyclic shift
    if sum(shift_size) > 0:
        x = torch.roll(x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))

    # unpad features
    x = x[:, :t, :h, :w, :].contiguous()
    return x


torch.fx.wrap("shifted_window_attention_3d")


class ShiftedWindowAttention3d(nn.Module):
    """
    See :func:`shifted_window_attention_3d`.
    """

    def __init__(
        self,
        dim: int,
        window_size: List[int],
        shift_size: List[int],
        num_heads: int,
        qkv_bias: bool = True,
        proj_bias: bool = True,
        attention_dropout: float = 0.0,
        dropout: float = 0.0,
    ) -> None:
        super().__init__()
        if len(window_size) != 3 or len(shift_size) != 3:
            raise ValueError("window_size and shift_size must be of length 2")

        self.window_size = window_size  # Wd, Wh, Ww
        self.shift_size = shift_size
        self.num_heads = num_heads
        self.attention_dropout = attention_dropout
        self.dropout = dropout

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)

        self.define_relative_position_bias_table()
        self.define_relative_position_index()

    def define_relative_position_bias_table(self) -> None:
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(
                (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1),
                self.num_heads,
            )
        )  # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
        nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)

    def define_relative_position_index(self) -> None:
        # get pair-wise relative position index for each token inside the window
        coords_dhw = [torch.arange(self.window_size[i]) for i in range(3)]
        coords = torch.stack(
            torch.meshgrid(coords_dhw[0], coords_dhw[1], coords_dhw[2], indexing="ij")
        )  # 3, Wd, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 3, Wd*Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 3, Wd*Wh*Ww, Wd*Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wd*Wh*Ww, Wd*Wh*Ww, 3
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 2] += self.window_size[2] - 1

        relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
        relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
        # We don't flatten the relative_position_index here in 3d case.
        relative_position_index = relative_coords.sum(-1)  # Wd*Wh*Ww, Wd*Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

    def get_relative_position_bias(self, window_size: List[int]) -> torch.Tensor:
        return _get_relative_position_bias(self.relative_position_bias_table, self.relative_position_index, window_size)  # type: ignore

    def forward(self, x: Tensor) -> Tensor:
        _, t, h, w, _ = x.shape
        size_dhw = [t, h, w]
        window_size, shift_size = self.window_size.copy(), self.shift_size.copy()
        # Handle case where window_size is larger than the input tensor
        window_size, shift_size = _get_window_and_shift_size(shift_size, size_dhw, window_size)

        relative_position_bias = self.get_relative_position_bias(window_size)

        return shifted_window_attention_3d(
            x,
            self.qkv.weight,
            self.proj.weight,
            relative_position_bias,
            window_size,
            self.num_heads,
            shift_size=shift_size,
            attention_dropout=self.attention_dropout,
            dropout=self.dropout,
            qkv_bias=self.qkv.bias,
            proj_bias=self.proj.bias,
            training=self.training,
        )


# Modified from:
# https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/mmaction/models/backbones/swin_transformer.py
class PatchEmbed3d(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (List[int]): Patch token size.
        in_channels (int): Number of input channels. Default: 3
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        patch_size: List[int],
        in_channels: int = 3,
        embed_dim: int = 96,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        self.tuple_patch_size = (patch_size[0], patch_size[1], patch_size[2])

        self.proj = nn.Conv3d(
            in_channels,
            embed_dim,
            kernel_size=self.tuple_patch_size,
            stride=self.tuple_patch_size,
        )
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        """Forward function."""
        # padding
        _, _, t, h, w = x.size()
        pad_size = _compute_pad_size_3d((t, h, w), self.tuple_patch_size)
        x = F.pad(x, (0, pad_size[2], 0, pad_size[1], 0, pad_size[0]))
        x = self.proj(x)  # B C T Wh Ww
        x = x.permute(0, 2, 3, 4, 1)  # B T Wh Ww C
        if self.norm is not None:
            x = self.norm(x)
        return x


class SwinTransformer3d(nn.Module):
    """
    Implements 3D Swin Transformer from the `"Video Swin Transformer" <https://arxiv.org/abs/2106.13230>`_ paper.
    Args:
        patch_size (List[int]): Patch size.
        embed_dim (int): Patch embedding dimension.
        depths (List(int)): Depth of each Swin Transformer layer.
        num_heads (List(int)): Number of attention heads in different layers.
        window_size (List[int]): Window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
        dropout (float): Dropout rate. Default: 0.0.
        attention_dropout (float): Attention dropout rate. Default: 0.0.
        stochastic_depth_prob (float): Stochastic depth rate. Default: 0.1.
        num_classes (int): Number of classes for classification head. Default: 400.
        norm_layer (nn.Module, optional): Normalization layer. Default: None.
        block (nn.Module, optional): SwinTransformer Block. Default: None.
        downsample_layer (nn.Module): Downsample layer (patch merging). Default: PatchMerging.
        patch_embed (nn.Module, optional): Patch Embedding layer. Default: None.
    """

    def __init__(
        self,
        patch_size: List[int],
        embed_dim: int,
        depths: List[int],
        num_heads: List[int],
        window_size: List[int],
        mlp_ratio: float = 4.0,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        stochastic_depth_prob: float = 0.1,
        num_classes: int = 400,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        block: Optional[Callable[..., nn.Module]] = None,
        downsample_layer: Callable[..., nn.Module] = PatchMerging,
        patch_embed: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        self.num_classes = num_classes

        if block is None:
            block = partial(SwinTransformerBlock, attn_layer=ShiftedWindowAttention3d)

        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-5)

        if patch_embed is None:
            patch_embed = PatchEmbed3d

        # split image into non-overlapping patches
        self.patch_embed = patch_embed(patch_size=patch_size, embed_dim=embed_dim, norm_layer=norm_layer)
        self.pos_drop = nn.Dropout(p=dropout)

        layers: List[nn.Module] = []
        total_stage_blocks = sum(depths)
        stage_block_id = 0
        # build SwinTransformer blocks
        for i_stage in range(len(depths)):
            stage: List[nn.Module] = []
            dim = embed_dim * 2**i_stage
            for i_layer in range(depths[i_stage]):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1)
                stage.append(
                    block(
                        dim,
                        num_heads[i_stage],
                        window_size=window_size,
                        shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size],
                        mlp_ratio=mlp_ratio,
                        dropout=dropout,
                        attention_dropout=attention_dropout,
                        stochastic_depth_prob=sd_prob,
                        norm_layer=norm_layer,
                        attn_layer=ShiftedWindowAttention3d,
                    )
                )
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            # add patch merging layer
            if i_stage < (len(depths) - 1):
                layers.append(downsample_layer(dim, norm_layer))
        self.features = nn.Sequential(*layers)

        self.num_features = embed_dim * 2 ** (len(depths) - 1)
        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool3d(1)
        self.head = nn.Linear(self.num_features, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def forward(self, x: Tensor) -> Tensor:
        # x: B C T H W
        x = self.patch_embed(x)  # B _T _H _W C
        x = self.pos_drop(x)
        x = self.features(x)  # B _T _H _W C
        x = self.norm(x)
        x = x.permute(0, 4, 1, 2, 3)  # B, C, _T, _H, _W
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.head(x)
        return x


def _swin_transformer3d(
    patch_size: List[int],
    embed_dim: int,
    depths: List[int],
    num_heads: List[int],
    window_size: List[int],
    stochastic_depth_prob: float,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> SwinTransformer3d:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = SwinTransformer3d(
        patch_size=patch_size,
        embed_dim=embed_dim,
        depths=depths,
        num_heads=num_heads,
        window_size=window_size,
        stochastic_depth_prob=stochastic_depth_prob,
        **kwargs,
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model


_COMMON_META = {
    "categories": _KINETICS400_CATEGORIES,
    "min_size": (1, 1),
    "min_temporal_size": 1,
}


class Swin3D_T_Weights(WeightsEnum):
    KINETICS400_V1 = Weights(
        url="https://download.pytorch.org/models/swin3d_t-7615ae03.pth",
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256,),
            mean=(0.4850, 0.4560, 0.4060),
            std=(0.2290, 0.2240, 0.2250),
        ),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
            "_docs": (
                "The weights were ported from the paper. The accuracies are estimated on video-level "
                "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
            ),
            "num_params": 28158070,
            "_metrics": {
                "Kinetics-400": {
                    "acc@1": 77.715,
                    "acc@5": 93.519,
                }
            },
            "_ops": 43.882,
            "_file_size": 121.543,
        },
    )
    DEFAULT = KINETICS400_V1


class Swin3D_S_Weights(WeightsEnum):
    KINETICS400_V1 = Weights(
        url="https://download.pytorch.org/models/swin3d_s-da41c237.pth",
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256,),
            mean=(0.4850, 0.4560, 0.4060),
            std=(0.2290, 0.2240, 0.2250),
        ),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
            "_docs": (
                "The weights were ported from the paper. The accuracies are estimated on video-level "
                "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
            ),
            "num_params": 49816678,
            "_metrics": {
                "Kinetics-400": {
                    "acc@1": 79.521,
                    "acc@5": 94.158,
                }
            },
            "_ops": 82.841,
            "_file_size": 218.288,
        },
    )
    DEFAULT = KINETICS400_V1


class Swin3D_B_Weights(WeightsEnum):
    KINETICS400_V1 = Weights(
        url="https://download.pytorch.org/models/swin3d_b_1k-24f7c7c6.pth",
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256,),
            mean=(0.4850, 0.4560, 0.4060),
            std=(0.2290, 0.2240, 0.2250),
        ),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
            "_docs": (
                "The weights were ported from the paper. The accuracies are estimated on video-level "
                "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
            ),
            "num_params": 88048984,
            "_metrics": {
                "Kinetics-400": {
                    "acc@1": 79.427,
                    "acc@5": 94.386,
                }
            },
            "_ops": 140.667,
            "_file_size": 364.134,
        },
    )
    KINETICS400_IMAGENET22K_V1 = Weights(
        url="https://download.pytorch.org/models/swin3d_b_22k-7c6ae6fa.pth",
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256,),
            mean=(0.4850, 0.4560, 0.4060),
            std=(0.2290, 0.2240, 0.2250),
        ),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
            "_docs": (
                "The weights were ported from the paper. The accuracies are estimated on video-level "
                "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
            ),
            "num_params": 88048984,
            "_metrics": {
                "Kinetics-400": {
                    "acc@1": 81.643,
                    "acc@5": 95.574,
                }
            },
            "_ops": 140.667,
            "_file_size": 364.134,
        },
    )
    DEFAULT = KINETICS400_V1


@register_model()
@handle_legacy_interface(weights=("pretrained", Swin3D_T_Weights.KINETICS400_V1))
def swin3d_t(*, weights: Optional[Swin3D_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
    """
    Constructs a swin_tiny architecture from
    `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.

    Args:
        weights (:class:`~torchvision.models.video.Swin3D_T_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.video.Swin3D_T_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.video.Swin3D_T_Weights
        :members:
    """
    weights = Swin3D_T_Weights.verify(weights)

    return _swin_transformer3d(
        patch_size=[2, 4, 4],
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=[8, 7, 7],
        stochastic_depth_prob=0.1,
        weights=weights,
        progress=progress,
        **kwargs,
    )


@register_model()
@handle_legacy_interface(weights=("pretrained", Swin3D_S_Weights.KINETICS400_V1))
def swin3d_s(*, weights: Optional[Swin3D_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
    """
    Constructs a swin_small architecture from
    `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.

    Args:
        weights (:class:`~torchvision.models.video.Swin3D_S_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.video.Swin3D_S_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.video.Swin3D_S_Weights
        :members:
    """
    weights = Swin3D_S_Weights.verify(weights)

    return _swin_transformer3d(
        patch_size=[2, 4, 4],
        embed_dim=96,
        depths=[2, 2, 18, 2],
        num_heads=[3, 6, 12, 24],
        window_size=[8, 7, 7],
        stochastic_depth_prob=0.1,
        weights=weights,
        progress=progress,
        **kwargs,
    )


@register_model()
@handle_legacy_interface(weights=("pretrained", Swin3D_B_Weights.KINETICS400_V1))
def swin3d_b(*, weights: Optional[Swin3D_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
    """
    Constructs a swin_base architecture from
    `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.

    Args:
        weights (:class:`~torchvision.models.video.Swin3D_B_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.video.Swin3D_B_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.video.Swin3D_B_Weights
        :members:
    """
    weights = Swin3D_B_Weights.verify(weights)

    return _swin_transformer3d(
        patch_size=[2, 4, 4],
        embed_dim=128,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
        window_size=[8, 7, 7],
        stochastic_depth_prob=0.1,
        weights=weights,
        progress=progress,
        **kwargs,
    )