1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
from collections import OrderedDict
from typing import Callable, Dict, List, Optional, Tuple
import torch.nn.functional as F
from torch import nn, Tensor
from ..ops.misc import Conv2dNormActivation
from ..utils import _log_api_usage_once
class ExtraFPNBlock(nn.Module):
"""
Base class for the extra block in the FPN.
Args:
results (List[Tensor]): the result of the FPN
x (List[Tensor]): the original feature maps
names (List[str]): the names for each one of the
original feature maps
Returns:
results (List[Tensor]): the extended set of results
of the FPN
names (List[str]): the extended set of names for the results
"""
def forward(
self,
results: List[Tensor],
x: List[Tensor],
names: List[str],
) -> Tuple[List[Tensor], List[str]]:
pass
class FeaturePyramidNetwork(nn.Module):
"""
Module that adds a FPN from on top of a set of feature maps. This is based on
`"Feature Pyramid Network for Object Detection" <https://arxiv.org/abs/1612.03144>`_.
The feature maps are currently supposed to be in increasing depth
order.
The input to the model is expected to be an OrderedDict[Tensor], containing
the feature maps on top of which the FPN will be added.
Args:
in_channels_list (list[int]): number of channels for each feature map that
is passed to the module
out_channels (int): number of channels of the FPN representation
extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
be performed. It is expected to take the fpn features, the original
features and the names of the original features as input, and returns
a new list of feature maps and their corresponding names
norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
Examples::
>>> m = torchvision.ops.FeaturePyramidNetwork([10, 20, 30], 5)
>>> # get some dummy data
>>> x = OrderedDict()
>>> x['feat0'] = torch.rand(1, 10, 64, 64)
>>> x['feat2'] = torch.rand(1, 20, 16, 16)
>>> x['feat3'] = torch.rand(1, 30, 8, 8)
>>> # compute the FPN on top of x
>>> output = m(x)
>>> print([(k, v.shape) for k, v in output.items()])
>>> # returns
>>> [('feat0', torch.Size([1, 5, 64, 64])),
>>> ('feat2', torch.Size([1, 5, 16, 16])),
>>> ('feat3', torch.Size([1, 5, 8, 8]))]
"""
_version = 2
def __init__(
self,
in_channels_list: List[int],
out_channels: int,
extra_blocks: Optional[ExtraFPNBlock] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
):
super().__init__()
_log_api_usage_once(self)
self.inner_blocks = nn.ModuleList()
self.layer_blocks = nn.ModuleList()
for in_channels in in_channels_list:
if in_channels == 0:
raise ValueError("in_channels=0 is currently not supported")
inner_block_module = Conv2dNormActivation(
in_channels, out_channels, kernel_size=1, padding=0, norm_layer=norm_layer, activation_layer=None
)
layer_block_module = Conv2dNormActivation(
out_channels, out_channels, kernel_size=3, norm_layer=norm_layer, activation_layer=None
)
self.inner_blocks.append(inner_block_module)
self.layer_blocks.append(layer_block_module)
# initialize parameters now to avoid modifying the initialization of top_blocks
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if extra_blocks is not None:
if not isinstance(extra_blocks, ExtraFPNBlock):
raise TypeError(f"extra_blocks should be of type ExtraFPNBlock not {type(extra_blocks)}")
self.extra_blocks = extra_blocks
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version < 2:
num_blocks = len(self.inner_blocks)
for block in ["inner_blocks", "layer_blocks"]:
for i in range(num_blocks):
for type in ["weight", "bias"]:
old_key = f"{prefix}{block}.{i}.{type}"
new_key = f"{prefix}{block}.{i}.0.{type}"
if old_key in state_dict:
state_dict[new_key] = state_dict.pop(old_key)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
def get_result_from_inner_blocks(self, x: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.inner_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.inner_blocks)
if idx < 0:
idx += num_blocks
out = x
for i, module in enumerate(self.inner_blocks):
if i == idx:
out = module(x)
return out
def get_result_from_layer_blocks(self, x: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.layer_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.layer_blocks)
if idx < 0:
idx += num_blocks
out = x
for i, module in enumerate(self.layer_blocks):
if i == idx:
out = module(x)
return out
def forward(self, x: Dict[str, Tensor]) -> Dict[str, Tensor]:
"""
Computes the FPN for a set of feature maps.
Args:
x (OrderedDict[Tensor]): feature maps for each feature level.
Returns:
results (OrderedDict[Tensor]): feature maps after FPN layers.
They are ordered from the highest resolution first.
"""
# unpack OrderedDict into two lists for easier handling
names = list(x.keys())
x = list(x.values())
last_inner = self.get_result_from_inner_blocks(x[-1], -1)
results = []
results.append(self.get_result_from_layer_blocks(last_inner, -1))
for idx in range(len(x) - 2, -1, -1):
inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)
feat_shape = inner_lateral.shape[-2:]
inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")
last_inner = inner_lateral + inner_top_down
results.insert(0, self.get_result_from_layer_blocks(last_inner, idx))
if self.extra_blocks is not None:
results, names = self.extra_blocks(results, x, names)
# make it back an OrderedDict
out = OrderedDict([(k, v) for k, v in zip(names, results)])
return out
class LastLevelMaxPool(ExtraFPNBlock):
"""
Applies a max_pool2d (not actual max_pool2d, we just subsample) on top of the last feature map
"""
def forward(
self,
x: List[Tensor],
y: List[Tensor],
names: List[str],
) -> Tuple[List[Tensor], List[str]]:
names.append("pool")
# Use max pooling to simulate stride 2 subsampling
x.append(F.max_pool2d(x[-1], kernel_size=1, stride=2, padding=0))
return x, names
class LastLevelP6P7(ExtraFPNBlock):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7.
"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
nn.init.kaiming_uniform_(module.weight, a=1)
nn.init.constant_(module.bias, 0)
self.use_P5 = in_channels == out_channels
def forward(
self,
p: List[Tensor],
c: List[Tensor],
names: List[str],
) -> Tuple[List[Tensor], List[str]]:
p5, c5 = p[-1], c[-1]
x = p5 if self.use_P5 else c5
p6 = self.p6(x)
p7 = self.p7(F.relu(p6))
p.extend([p6, p7])
names.extend(["p6", "p7"])
return p, names
|