1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
|
import math
import numbers
import warnings
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
import PIL.Image
import torch
from torchvision import transforms as _transforms, tv_tensors
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import _get_perspective_coeffs
from torchvision.transforms.v2 import functional as F, InterpolationMode, Transform
from torchvision.transforms.v2.functional._utils import _FillType
from ._transform import _RandomApplyTransform
from ._utils import (
_check_padding_arg,
_check_padding_mode_arg,
_check_sequence_input,
_get_fill,
_setup_angle,
_setup_fill_arg,
_setup_number_or_seq,
_setup_size,
get_bounding_boxes,
has_all,
has_any,
is_pure_tensor,
query_size,
)
class RandomHorizontalFlip(_RandomApplyTransform):
"""Horizontally flip the input with a given probability.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
p (float, optional): probability of the input being flipped. Default value is 0.5
"""
_v1_transform_cls = _transforms.RandomHorizontalFlip
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(F.horizontal_flip, inpt)
class RandomVerticalFlip(_RandomApplyTransform):
"""Vertically flip the input with a given probability.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
p (float, optional): probability of the input being flipped. Default value is 0.5
"""
_v1_transform_cls = _transforms.RandomVerticalFlip
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(F.vertical_flip, inpt)
class Resize(Transform):
"""Resize the input to the given size.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
size (sequence, int, or None): Desired
output size.
- If size is a sequence like (h, w), output size will be matched to this.
- If size is an int, smaller edge of the image will be matched to this
number. i.e, if height > width, then image will be rescaled to
(size * height / width, size).
- If size is None, the output shape is determined by the ``max_size``
parameter.
.. note::
In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
max_size (int, optional): The maximum allowed for the longer edge of
the resized image.
- If ``size`` is an int: if the longer edge of the image is greater
than ``max_size`` after being resized according to ``size``,
``size`` will be overruled so that the longer edge is equal to
``max_size``. As a result, the smaller edge may be shorter than
``size``. This is only supported if ``size`` is an int (or a
sequence of length 1 in torchscript mode).
- If ``size`` is None: the longer edge of the image will be matched
to max_size. i.e, if height > width, then image will be rescaled
to (max_size, max_size * width / height).
This should be left to ``None`` (default) when ``size`` is a
sequence.
antialias (bool, optional): Whether to apply antialiasing.
It only affects **tensors** with bilinear or bicubic modes and it is
ignored otherwise: on PIL images, antialiasing is always applied on
bilinear or bicubic modes; on other modes (for PIL images and
tensors), antialiasing makes no sense and this parameter is ignored.
Possible values are:
- ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
Other mode aren't affected. This is probably what you want to use.
- ``False``: will not apply antialiasing for tensors on any mode. PIL
images are still antialiased on bilinear or bicubic modes, because
PIL doesn't support no antialias.
- ``None``: equivalent to ``False`` for tensors and ``True`` for
PIL images. This value exists for legacy reasons and you probably
don't want to use it unless you really know what you are doing.
The default value changed from ``None`` to ``True`` in
v0.17, for the PIL and Tensor backends to be consistent.
"""
_v1_transform_cls = _transforms.Resize
def __init__(
self,
size: Union[int, Sequence[int], None],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[bool] = True,
) -> None:
super().__init__()
if isinstance(size, int):
size = [size]
elif isinstance(size, Sequence) and len(size) in {1, 2}:
size = list(size)
elif size is None:
if not isinstance(max_size, int):
raise ValueError(f"max_size must be an integer when size is None, but got {max_size} instead.")
else:
raise ValueError(
f"size can be an integer, a sequence of one or two integers, or None, but got {size} instead."
)
self.size = size
self.interpolation = interpolation
self.max_size = max_size
self.antialias = antialias
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(
F.resize,
inpt,
self.size,
interpolation=self.interpolation,
max_size=self.max_size,
antialias=self.antialias,
)
class CenterCrop(Transform):
"""Crop the input at the center.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
_v1_transform_cls = _transforms.CenterCrop
def __init__(self, size: Union[int, Sequence[int]]):
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(F.center_crop, inpt, output_size=self.size)
class RandomResizedCrop(Transform):
"""Crop a random portion of the input and resize it to a given size.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
A crop of the original input is made: the crop has a random area (H * W)
and a random aspect ratio. This crop is finally resized to the given
size. This is popularly used to train the Inception networks.
Args:
size (int or sequence): expected output size of the crop, for each edge. If size is an
int instead of sequence like (h, w), a square output size ``(size, size)`` is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
.. note::
In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
scale (tuple of float, optional): Specifies the lower and upper bounds for the random area of the crop,
before resizing. The scale is defined with respect to the area of the original image.
ratio (tuple of float, optional): lower and upper bounds for the random aspect ratio of the crop, before
resizing.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
antialias (bool, optional): Whether to apply antialiasing.
It only affects **tensors** with bilinear or bicubic modes and it is
ignored otherwise: on PIL images, antialiasing is always applied on
bilinear or bicubic modes; on other modes (for PIL images and
tensors), antialiasing makes no sense and this parameter is ignored.
Possible values are:
- ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
Other mode aren't affected. This is probably what you want to use.
- ``False``: will not apply antialiasing for tensors on any mode. PIL
images are still antialiased on bilinear or bicubic modes, because
PIL doesn't support no antialias.
- ``None``: equivalent to ``False`` for tensors and ``True`` for
PIL images. This value exists for legacy reasons and you probably
don't want to use it unless you really know what you are doing.
The default value changed from ``None`` to ``True`` in
v0.17, for the PIL and Tensor backends to be consistent.
"""
_v1_transform_cls = _transforms.RandomResizedCrop
def __init__(
self,
size: Union[int, Sequence[int]],
scale: Tuple[float, float] = (0.08, 1.0),
ratio: Tuple[float, float] = (3.0 / 4.0, 4.0 / 3.0),
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> None:
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
if not isinstance(scale, Sequence):
raise TypeError("Scale should be a sequence")
if not isinstance(ratio, Sequence):
raise TypeError("Ratio should be a sequence")
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("Scale and ratio should be of kind (min, max)")
self.scale = scale
self.ratio = ratio
self.interpolation = interpolation
self.antialias = antialias
self._log_ratio = torch.log(torch.tensor(self.ratio))
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_size(flat_inputs)
area = height * width
log_ratio = self._log_ratio
for _ in range(10):
target_area = area * torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
aspect_ratio = torch.exp(
torch.empty(1).uniform_(
log_ratio[0], # type: ignore[arg-type]
log_ratio[1], # type: ignore[arg-type]
)
).item()
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
i = torch.randint(0, height - h + 1, size=(1,)).item()
j = torch.randint(0, width - w + 1, size=(1,)).item()
break
else:
# Fallback to central crop
in_ratio = float(width) / float(height)
if in_ratio < min(self.ratio):
w = width
h = int(round(w / min(self.ratio)))
elif in_ratio > max(self.ratio):
h = height
w = int(round(h * max(self.ratio)))
else: # whole image
w = width
h = height
i = (height - h) // 2
j = (width - w) // 2
return dict(top=i, left=j, height=h, width=w)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(
F.resized_crop, inpt, **params, size=self.size, interpolation=self.interpolation, antialias=self.antialias
)
class FiveCrop(Transform):
"""Crop the image or video into four corners and the central crop.
If the input is a :class:`torch.Tensor` or a :class:`~torchvision.tv_tensors.Image` or a
:class:`~torchvision.tv_tensors.Video` it can have arbitrary number of leading batch dimensions.
For example, the image can have ``[..., C, H, W]`` shape.
.. Note::
This transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your Dataset returns. See below for an example of how to deal with
this.
Args:
size (sequence or int): Desired output size of the crop. If size is an ``int``
instead of sequence like (h, w), a square crop of size (size, size) is made.
If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
Example:
>>> class BatchMultiCrop(transforms.Transform):
... def forward(self, sample: Tuple[Tuple[Union[tv_tensors.Image, tv_tensors.Video], ...], int]):
... images_or_videos, labels = sample
... batch_size = len(images_or_videos)
... image_or_video = images_or_videos[0]
... images_or_videos = tv_tensors.wrap(torch.stack(images_or_videos), like=image_or_video)
... labels = torch.full((batch_size,), label, device=images_or_videos.device)
... return images_or_videos, labels
...
>>> image = tv_tensors.Image(torch.rand(3, 256, 256))
>>> label = 3
>>> transform = transforms.Compose([transforms.FiveCrop(224), BatchMultiCrop()])
>>> images, labels = transform(image, label)
>>> images.shape
torch.Size([5, 3, 224, 224])
>>> labels
tensor([3, 3, 3, 3, 3])
"""
_v1_transform_cls = _transforms.FiveCrop
def __init__(self, size: Union[int, Sequence[int]]) -> None:
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
def _call_kernel(self, functional: Callable, inpt: Any, *args: Any, **kwargs: Any) -> Any:
if isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
warnings.warn(
f"{type(self).__name__}() is currently passing through inputs of type "
f"tv_tensors.{type(inpt).__name__}. This will likely change in the future."
)
return super()._call_kernel(functional, inpt, *args, **kwargs)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(F.five_crop, inpt, self.size)
def check_inputs(self, flat_inputs: List[Any]) -> None:
if has_any(flat_inputs, tv_tensors.BoundingBoxes, tv_tensors.Mask):
raise TypeError(f"BoundingBoxes'es and Mask's are not supported by {type(self).__name__}()")
class TenCrop(Transform):
"""Crop the image or video into four corners and the central crop plus the flipped version of
these (horizontal flipping is used by default).
If the input is a :class:`torch.Tensor` or a :class:`~torchvision.tv_tensors.Image` or a
:class:`~torchvision.tv_tensors.Video` it can have arbitrary number of leading batch dimensions.
For example, the image can have ``[..., C, H, W]`` shape.
See :class:`~torchvision.transforms.v2.FiveCrop` for an example.
.. Note::
This transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your Dataset returns. See below for an example of how to deal with
this.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
vertical_flip (bool, optional): Use vertical flipping instead of horizontal
"""
_v1_transform_cls = _transforms.TenCrop
def __init__(self, size: Union[int, Sequence[int]], vertical_flip: bool = False) -> None:
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
self.vertical_flip = vertical_flip
def _call_kernel(self, functional: Callable, inpt: Any, *args: Any, **kwargs: Any) -> Any:
if isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
warnings.warn(
f"{type(self).__name__}() is currently passing through inputs of type "
f"tv_tensors.{type(inpt).__name__}. This will likely change in the future."
)
return super()._call_kernel(functional, inpt, *args, **kwargs)
def check_inputs(self, flat_inputs: List[Any]) -> None:
if has_any(flat_inputs, tv_tensors.BoundingBoxes, tv_tensors.Mask):
raise TypeError(f"BoundingBoxes'es and Mask's are not supported by {type(self).__name__}()")
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(F.ten_crop, inpt, self.size, vertical_flip=self.vertical_flip)
class Pad(Transform):
"""Pad the input on all sides with the given "pad" value.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
padding (int or sequence): Padding on each border. If a single int is provided this
is used to pad all borders. If sequence of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a sequence of length 4 is provided
this is the padding for the left, top, right and bottom borders respectively.
.. note::
In torchscript mode padding as single int is not supported, use a sequence of
length 1: ``[padding, ]``.
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
Default is "constant".
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the last value on the edge.
For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image repeating the last value on the edge.
For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
_v1_transform_cls = _transforms.Pad
def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
params = super()._extract_params_for_v1_transform()
if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
return params
def __init__(
self,
padding: Union[int, Sequence[int]],
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
) -> None:
super().__init__()
_check_padding_arg(padding)
_check_padding_mode_arg(padding_mode)
# This cast does Sequence[int] -> List[int] and is required to make mypy happy
if not isinstance(padding, int):
padding = list(padding)
self.padding = padding
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(F.pad, inpt, padding=self.padding, fill=fill, padding_mode=self.padding_mode) # type: ignore[arg-type]
class RandomZoomOut(_RandomApplyTransform):
""" "Zoom out" transformation from
`"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
This transformation randomly pads images, videos, bounding boxes and masks creating a zoom out effect.
Output spatial size is randomly sampled from original size up to a maximum size configured
with ``side_range`` parameter:
.. code-block:: python
r = uniform_sample(side_range[0], side_range[1])
output_width = input_width * r
output_height = input_height * r
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
side_range (sequence of floats, optional): tuple of two floats defines minimum and maximum factors to
scale the input size.
p (float, optional): probability that the zoom operation will be performed.
"""
def __init__(
self,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
side_range: Sequence[float] = (1.0, 4.0),
p: float = 0.5,
) -> None:
super().__init__(p=p)
self.fill = fill
self._fill = _setup_fill_arg(fill)
_check_sequence_input(side_range, "side_range", req_sizes=(2,))
self.side_range = side_range
if side_range[0] < 1.0 or side_range[0] > side_range[1]:
raise ValueError(f"Invalid side range provided {side_range}.")
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
orig_h, orig_w = query_size(flat_inputs)
r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
canvas_width = int(orig_w * r)
canvas_height = int(orig_h * r)
r = torch.rand(2)
left = int((canvas_width - orig_w) * r[0])
top = int((canvas_height - orig_h) * r[1])
right = canvas_width - (left + orig_w)
bottom = canvas_height - (top + orig_h)
padding = [left, top, right, bottom]
return dict(padding=padding)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(F.pad, inpt, **params, fill=fill)
class RandomRotation(Transform):
"""Rotate the input by angle.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
degrees (sequence or number): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center (see note below) and no translation.
center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
Default is the center of the image.
.. note::
In theory, setting ``center`` has no effect if ``expand=True``, since the image center will become the
center of rotation. In practice however, due to numerical precision, this can lead to off-by-one
differences of the resulting image size compared to using the image center in the first place. Thus, when
setting ``expand=True``, it's best to leave ``center=None`` (default).
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
_v1_transform_cls = _transforms.RandomRotation
def __init__(
self,
degrees: Union[numbers.Number, Sequence],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
) -> None:
super().__init__()
self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
self.interpolation = interpolation
self.expand = expand
self.fill = fill
self._fill = _setup_fill_arg(fill)
if center is not None:
_check_sequence_input(center, "center", req_sizes=(2,))
self.center = center
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
return dict(angle=angle)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(
F.rotate,
inpt,
**params,
interpolation=self.interpolation,
expand=self.expand,
center=self.center,
fill=fill,
)
class RandomAffine(Transform):
"""Random affine transformation the input keeping center invariant.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
degrees (sequence or number): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to deactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
shear (sequence or number, optional): Range of degrees to select from.
If shear is a number, a shear parallel to the x-axis in the range (-shear, +shear)
will be applied. Else if shear is a sequence of 2 values a shear parallel to the x-axis in the
range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
an x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
Will not apply shear by default.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
Default is the center of the image.
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
_v1_transform_cls = _transforms.RandomAffine
def __init__(
self,
degrees: Union[numbers.Number, Sequence],
translate: Optional[Sequence[float]] = None,
scale: Optional[Sequence[float]] = None,
shear: Optional[Union[int, float, Sequence[float]]] = None,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
center: Optional[List[float]] = None,
) -> None:
super().__init__()
self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
if translate is not None:
_check_sequence_input(translate, "translate", req_sizes=(2,))
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
_check_sequence_input(scale, "scale", req_sizes=(2,))
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
else:
self.shear = shear
self.interpolation = interpolation
self.fill = fill
self._fill = _setup_fill_arg(fill)
if center is not None:
_check_sequence_input(center, "center", req_sizes=(2,))
self.center = center
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_size(flat_inputs)
angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
if self.translate is not None:
max_dx = float(self.translate[0] * width)
max_dy = float(self.translate[1] * height)
tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
translate = (tx, ty)
else:
translate = (0, 0)
if self.scale is not None:
scale = torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
else:
scale = 1.0
shear_x = shear_y = 0.0
if self.shear is not None:
shear_x = torch.empty(1).uniform_(self.shear[0], self.shear[1]).item()
if len(self.shear) == 4:
shear_y = torch.empty(1).uniform_(self.shear[2], self.shear[3]).item()
shear = (shear_x, shear_y)
return dict(angle=angle, translate=translate, scale=scale, shear=shear)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(
F.affine,
inpt,
**params,
interpolation=self.interpolation,
fill=fill,
center=self.center,
)
class RandomCrop(Transform):
"""Crop the input at a random location.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
padding (int or sequence, optional): Optional padding on each border
of the image. Default is None. If a single int is provided this
is used to pad all borders. If sequence of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a sequence of length 4 is provided
this is the padding for the left, top, right and bottom borders respectively.
.. note::
In torchscript mode padding as single int is not supported, use a sequence of
length 1: ``[padding, ]``.
pad_if_needed (boolean, optional): It will pad the image if smaller than the
desired size to avoid raising an exception. Since cropping is done
after padding, the padding seems to be done at a random offset.
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the last value on the edge.
For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image repeating the last value on the edge.
For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
_v1_transform_cls = _transforms.RandomCrop
def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
params = super()._extract_params_for_v1_transform()
if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
padding = self.padding
if padding is not None:
pad_left, pad_right, pad_top, pad_bottom = padding
padding = [pad_left, pad_top, pad_right, pad_bottom]
params["padding"] = padding
return params
def __init__(
self,
size: Union[int, Sequence[int]],
padding: Optional[Union[int, Sequence[int]]] = None,
pad_if_needed: bool = False,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
) -> None:
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
if pad_if_needed or padding is not None:
if padding is not None:
_check_padding_arg(padding)
_check_padding_mode_arg(padding_mode)
self.padding = F._geometry._parse_pad_padding(padding) if padding else None # type: ignore[arg-type]
self.pad_if_needed = pad_if_needed
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
padded_height, padded_width = query_size(flat_inputs)
if self.padding is not None:
pad_left, pad_right, pad_top, pad_bottom = self.padding
padded_height += pad_top + pad_bottom
padded_width += pad_left + pad_right
else:
pad_left = pad_right = pad_top = pad_bottom = 0
cropped_height, cropped_width = self.size
if self.pad_if_needed:
if padded_height < cropped_height:
diff = cropped_height - padded_height
pad_top += diff
pad_bottom += diff
padded_height += 2 * diff
if padded_width < cropped_width:
diff = cropped_width - padded_width
pad_left += diff
pad_right += diff
padded_width += 2 * diff
if padded_height < cropped_height or padded_width < cropped_width:
raise ValueError(
f"Required crop size {(cropped_height, cropped_width)} is larger than "
f"{'padded ' if self.padding is not None else ''}input image size {(padded_height, padded_width)}."
)
# We need a different order here than we have in self.padding since this padding will be parsed again in `F.pad`
padding = [pad_left, pad_top, pad_right, pad_bottom]
needs_pad = any(padding)
needs_vert_crop, top = (
(True, int(torch.randint(0, padded_height - cropped_height + 1, size=())))
if padded_height > cropped_height
else (False, 0)
)
needs_horz_crop, left = (
(True, int(torch.randint(0, padded_width - cropped_width + 1, size=())))
if padded_width > cropped_width
else (False, 0)
)
return dict(
needs_crop=needs_vert_crop or needs_horz_crop,
top=top,
left=left,
height=cropped_height,
width=cropped_width,
needs_pad=needs_pad,
padding=padding,
)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if params["needs_pad"]:
fill = _get_fill(self._fill, type(inpt))
inpt = self._call_kernel(F.pad, inpt, padding=params["padding"], fill=fill, padding_mode=self.padding_mode)
if params["needs_crop"]:
inpt = self._call_kernel(
F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"]
)
return inpt
class RandomPerspective(_RandomApplyTransform):
"""Perform a random perspective transformation of the input with a given probability.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
distortion_scale (float, optional): argument to control the degree of distortion and ranges from 0 to 1.
Default is 0.5.
p (float, optional): probability of the input being transformed. Default is 0.5.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
"""
_v1_transform_cls = _transforms.RandomPerspective
def __init__(
self,
distortion_scale: float = 0.5,
p: float = 0.5,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
) -> None:
super().__init__(p=p)
if not (0 <= distortion_scale <= 1):
raise ValueError("Argument distortion_scale value should be between 0 and 1")
self.distortion_scale = distortion_scale
self.interpolation = interpolation
self.fill = fill
self._fill = _setup_fill_arg(fill)
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_size(flat_inputs)
distortion_scale = self.distortion_scale
half_height = height // 2
half_width = width // 2
bound_height = int(distortion_scale * half_height) + 1
bound_width = int(distortion_scale * half_width) + 1
topleft = [
int(torch.randint(0, bound_width, size=(1,))),
int(torch.randint(0, bound_height, size=(1,))),
]
topright = [
int(torch.randint(width - bound_width, width, size=(1,))),
int(torch.randint(0, bound_height, size=(1,))),
]
botright = [
int(torch.randint(width - bound_width, width, size=(1,))),
int(torch.randint(height - bound_height, height, size=(1,))),
]
botleft = [
int(torch.randint(0, bound_width, size=(1,))),
int(torch.randint(height - bound_height, height, size=(1,))),
]
startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
endpoints = [topleft, topright, botright, botleft]
perspective_coeffs = _get_perspective_coeffs(startpoints, endpoints)
return dict(coefficients=perspective_coeffs)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(
F.perspective,
inpt,
startpoints=None,
endpoints=None,
fill=fill,
interpolation=self.interpolation,
**params,
)
class ElasticTransform(Transform):
"""Transform the input with elastic transformations.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Given alpha and sigma, it will generate displacement
vectors for all pixels based on random offsets. Alpha controls the strength
and sigma controls the smoothness of the displacements.
The displacements are added to an identity grid and the resulting grid is
used to transform the input.
.. note::
Implementation to transform bounding boxes is approximative (not exact).
We construct an approximation of the inverse grid as ``inverse_grid = identity - displacement``.
This is not an exact inverse of the grid used to transform images, i.e. ``grid = identity + displacement``.
Our assumption is that ``displacement * displacement`` is small and can be ignored.
Large displacements would lead to large errors in the approximation.
Applications:
Randomly transforms the morphology of objects in images and produces a
see-through-water-like effect.
Args:
alpha (float or sequence of floats, optional): Magnitude of displacements. Default is 50.0.
sigma (float or sequence of floats, optional): Smoothness of displacements. Default is 5.0.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
fill (number or tuple or dict, optional): Pixel fill value used when the ``padding_mode`` is constant.
Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
Fill value can be also a dictionary mapping data type to the fill value, e.g.
``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
``Mask`` will be filled with 0.
"""
_v1_transform_cls = _transforms.ElasticTransform
def __init__(
self,
alpha: Union[float, Sequence[float]] = 50.0,
sigma: Union[float, Sequence[float]] = 5.0,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
) -> None:
super().__init__()
self.alpha = _setup_number_or_seq(alpha, "alpha")
self.sigma = _setup_number_or_seq(sigma, "sigma")
self.interpolation = interpolation
self.fill = fill
self._fill = _setup_fill_arg(fill)
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
size = list(query_size(flat_inputs))
dx = torch.rand([1, 1] + size) * 2 - 1
if self.sigma[0] > 0.0:
kx = int(8 * self.sigma[0] + 1)
# if kernel size is even we have to make it odd
if kx % 2 == 0:
kx += 1
dx = self._call_kernel(F.gaussian_blur, dx, [kx, kx], list(self.sigma))
dx = dx * self.alpha[0] / size[0]
dy = torch.rand([1, 1] + size) * 2 - 1
if self.sigma[1] > 0.0:
ky = int(8 * self.sigma[1] + 1)
# if kernel size is even we have to make it odd
if ky % 2 == 0:
ky += 1
dy = self._call_kernel(F.gaussian_blur, dy, [ky, ky], list(self.sigma))
dy = dy * self.alpha[1] / size[1]
displacement = torch.concat([dx, dy], 1).permute([0, 2, 3, 1]) # 1 x H x W x 2
return dict(displacement=displacement)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = _get_fill(self._fill, type(inpt))
return self._call_kernel(
F.elastic,
inpt,
**params,
fill=fill,
interpolation=self.interpolation,
)
class RandomIoUCrop(Transform):
"""Random IoU crop transformation from
`"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
This transformation requires an image or video data and ``tv_tensors.BoundingBoxes`` in the input.
.. warning::
In order to properly remove the bounding boxes below the IoU threshold, `RandomIoUCrop`
must be followed by :class:`~torchvision.transforms.v2.SanitizeBoundingBoxes`, either immediately
after or later in the transforms pipeline.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
min_scale (float, optional): Minimum factors to scale the input size.
max_scale (float, optional): Maximum factors to scale the input size.
min_aspect_ratio (float, optional): Minimum aspect ratio for the cropped image or video.
max_aspect_ratio (float, optional): Maximum aspect ratio for the cropped image or video.
sampler_options (list of float, optional): List of minimal IoU (Jaccard) overlap between all the boxes and
a cropped image or video. Default, ``None`` which corresponds to ``[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]``
trials (int, optional): Number of trials to find a crop for a given value of minimal IoU (Jaccard) overlap.
Default, 40.
"""
def __init__(
self,
min_scale: float = 0.3,
max_scale: float = 1.0,
min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2.0,
sampler_options: Optional[List[float]] = None,
trials: int = 40,
):
super().__init__()
# Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
self.min_scale = min_scale
self.max_scale = max_scale
self.min_aspect_ratio = min_aspect_ratio
self.max_aspect_ratio = max_aspect_ratio
if sampler_options is None:
sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
self.options = sampler_options
self.trials = trials
def check_inputs(self, flat_inputs: List[Any]) -> None:
if not (
has_all(flat_inputs, tv_tensors.BoundingBoxes)
and has_any(flat_inputs, PIL.Image.Image, tv_tensors.Image, is_pure_tensor)
):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain tensor or PIL images "
"and bounding boxes. Sample can also contain masks."
)
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
orig_h, orig_w = query_size(flat_inputs)
bboxes = get_bounding_boxes(flat_inputs)
while True:
# sample an option
idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
min_jaccard_overlap = self.options[idx]
if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option
return dict()
for _ in range(self.trials):
# check the aspect ratio limitations
r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
new_w = int(orig_w * r[0])
new_h = int(orig_h * r[1])
aspect_ratio = new_w / new_h
if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
continue
# check for 0 area crops
r = torch.rand(2)
left = int((orig_w - new_w) * r[0])
top = int((orig_h - new_h) * r[1])
right = left + new_w
bottom = top + new_h
if left == right or top == bottom:
continue
# check for any valid boxes with centers within the crop area
xyxy_bboxes = F.convert_bounding_box_format(
bboxes.as_subclass(torch.Tensor),
bboxes.format,
tv_tensors.BoundingBoxFormat.XYXY,
)
cx = 0.5 * (xyxy_bboxes[..., 0] + xyxy_bboxes[..., 2])
cy = 0.5 * (xyxy_bboxes[..., 1] + xyxy_bboxes[..., 3])
is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
if not is_within_crop_area.any():
continue
# check at least 1 box with jaccard limitations
xyxy_bboxes = xyxy_bboxes[is_within_crop_area]
ious = box_iou(
xyxy_bboxes,
torch.tensor([[left, top, right, bottom]], dtype=xyxy_bboxes.dtype, device=xyxy_bboxes.device),
)
if ious.max() < min_jaccard_overlap:
continue
return dict(top=top, left=left, height=new_h, width=new_w, is_within_crop_area=is_within_crop_area)
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if len(params) < 1:
return inpt
output = self._call_kernel(
F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"]
)
if isinstance(output, tv_tensors.BoundingBoxes):
# We "mark" the invalid boxes as degenreate, and they can be
# removed by a later call to SanitizeBoundingBoxes()
output[~params["is_within_crop_area"]] = 0
return output
class ScaleJitter(Transform):
"""Perform Large Scale Jitter on the input according to
`"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
target_size (tuple of int): Target size. This parameter defines base scale for jittering,
e.g. ``min(target_size[0] / width, target_size[1] / height)``.
scale_range (tuple of float, optional): Minimum and maximum of the scale range. Default, ``(0.1, 2.0)``.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
antialias (bool, optional): Whether to apply antialiasing.
It only affects **tensors** with bilinear or bicubic modes and it is
ignored otherwise: on PIL images, antialiasing is always applied on
bilinear or bicubic modes; on other modes (for PIL images and
tensors), antialiasing makes no sense and this parameter is ignored.
Possible values are:
- ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
Other mode aren't affected. This is probably what you want to use.
- ``False``: will not apply antialiasing for tensors on any mode. PIL
images are still antialiased on bilinear or bicubic modes, because
PIL doesn't support no antialias.
- ``None``: equivalent to ``False`` for tensors and ``True`` for
PIL images. This value exists for legacy reasons and you probably
don't want to use it unless you really know what you are doing.
The default value changed from ``None`` to ``True`` in
v0.17, for the PIL and Tensor backends to be consistent.
"""
def __init__(
self,
target_size: Tuple[int, int],
scale_range: Tuple[float, float] = (0.1, 2.0),
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
):
super().__init__()
self.target_size = target_size
self.scale_range = scale_range
self.interpolation = interpolation
self.antialias = antialias
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
orig_height, orig_width = query_size(flat_inputs)
scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale
new_width = int(orig_width * r)
new_height = int(orig_height * r)
return dict(size=(new_height, new_width))
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(
F.resize, inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias
)
class RandomShortestSize(Transform):
"""Randomly resize the input.
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
min_size (int or sequence of int): Minimum spatial size. Single integer value or a sequence of integer values.
max_size (int, optional): Maximum spatial size. Default, None.
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
antialias (bool, optional): Whether to apply antialiasing.
It only affects **tensors** with bilinear or bicubic modes and it is
ignored otherwise: on PIL images, antialiasing is always applied on
bilinear or bicubic modes; on other modes (for PIL images and
tensors), antialiasing makes no sense and this parameter is ignored.
Possible values are:
- ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
Other mode aren't affected. This is probably what you want to use.
- ``False``: will not apply antialiasing for tensors on any mode. PIL
images are still antialiased on bilinear or bicubic modes, because
PIL doesn't support no antialias.
- ``None``: equivalent to ``False`` for tensors and ``True`` for
PIL images. This value exists for legacy reasons and you probably
don't want to use it unless you really know what you are doing.
The default value changed from ``None`` to ``True`` in
v0.17, for the PIL and Tensor backends to be consistent.
"""
def __init__(
self,
min_size: Union[List[int], Tuple[int], int],
max_size: Optional[int] = None,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
):
super().__init__()
self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
self.max_size = max_size
self.interpolation = interpolation
self.antialias = antialias
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
orig_height, orig_width = query_size(flat_inputs)
min_size = self.min_size[int(torch.randint(len(self.min_size), ()))]
r = min_size / min(orig_height, orig_width)
if self.max_size is not None:
r = min(r, self.max_size / max(orig_height, orig_width))
new_width = int(orig_width * r)
new_height = int(orig_height * r)
return dict(size=(new_height, new_width))
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(
F.resize, inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias
)
class RandomResize(Transform):
"""Randomly resize the input.
This transformation can be used together with ``RandomCrop`` as data augmentations to train
models on image segmentation task.
Output spatial size is randomly sampled from the interval ``[min_size, max_size]``:
.. code-block:: python
size = uniform_sample(min_size, max_size)
output_width = size
output_height = size
If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
:class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
it can have arbitrary number of leading batch dimensions. For example,
the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
Args:
min_size (int): Minimum output size for random sampling
max_size (int): Maximum output size for random sampling
interpolation (InterpolationMode, optional): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
antialias (bool, optional): Whether to apply antialiasing.
It only affects **tensors** with bilinear or bicubic modes and it is
ignored otherwise: on PIL images, antialiasing is always applied on
bilinear or bicubic modes; on other modes (for PIL images and
tensors), antialiasing makes no sense and this parameter is ignored.
Possible values are:
- ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
Other mode aren't affected. This is probably what you want to use.
- ``False``: will not apply antialiasing for tensors on any mode. PIL
images are still antialiased on bilinear or bicubic modes, because
PIL doesn't support no antialias.
- ``None``: equivalent to ``False`` for tensors and ``True`` for
PIL images. This value exists for legacy reasons and you probably
don't want to use it unless you really know what you are doing.
The default value changed from ``None`` to ``True`` in
v0.17, for the PIL and Tensor backends to be consistent.
"""
def __init__(
self,
min_size: int,
max_size: int,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> None:
super().__init__()
self.min_size = min_size
self.max_size = max_size
self.interpolation = interpolation
self.antialias = antialias
def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
size = int(torch.randint(self.min_size, self.max_size, ()))
return dict(size=[size])
def transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return self._call_kernel(
F.resize, inpt, params["size"], interpolation=self.interpolation, antialias=self.antialias
)
|