File: _geometry.py

package info (click to toggle)
pytorch-vision 0.21.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,228 kB
  • sloc: python: 65,904; cpp: 11,406; ansic: 2,459; java: 550; sh: 265; xml: 79; objc: 56; makefile: 33
file content (2377 lines) | stat: -rw-r--r-- 87,520 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
import math
import numbers
import warnings
from typing import Any, List, Optional, Sequence, Tuple, Union

import PIL.Image
import torch
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad

from torchvision import tv_tensors
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
from torchvision.transforms.functional import (
    _compute_resized_output_size as __compute_resized_output_size,
    _get_perspective_coeffs,
    _interpolation_modes_from_int,
    InterpolationMode,
    pil_modes_mapping,
    pil_to_tensor,
    to_pil_image,
)

from torchvision.utils import _log_api_usage_once

from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format

from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal


def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
    if torch.jit.is_scripting():
        return horizontal_flip_image(inpt)

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)


@_register_kernel_internal(horizontal_flip, torch.Tensor)
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-1)


@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
    return _FP.hflip(image)


@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image(mask)


def horizontal_flip_bounding_boxes(
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
) -> torch.Tensor:
    shape = bounding_boxes.shape

    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)

    if format == tv_tensors.BoundingBoxFormat.XYXY:
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()

    return bounding_boxes.reshape(shape)


@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image(video)


def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
    if torch.jit.is_scripting():
        return vertical_flip_image(inpt)

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)


@_register_kernel_internal(vertical_flip, torch.Tensor)
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-2)


@_register_kernel_internal(vertical_flip, PIL.Image.Image)
def _vertical_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
    return _FP.vflip(image)


@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image(mask)


def vertical_flip_bounding_boxes(
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
) -> torch.Tensor:
    shape = bounding_boxes.shape

    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)

    if format == tv_tensors.BoundingBoxFormat.XYXY:
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()

    return bounding_boxes.reshape(shape)


@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(vertical_flip, tv_tensors.Video)
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image(video)


# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


def _compute_resized_output_size(
    canvas_size: Tuple[int, int], size: Optional[List[int]], max_size: Optional[int] = None
) -> List[int]:
    if isinstance(size, int):
        size = [size]
    elif max_size is not None and size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size is None or specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size, allow_size_none=True)


def resize(
    inpt: torch.Tensor,
    size: Optional[List[int]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.Resize` for details."""
    if torch.jit.is_scripting():
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)


# This is an internal helper method for resize_image. We should put it here instead of keeping it
# inside resize_image due to torchscript.
# uint8 dtype support for bilinear and bicubic is limited to cpu and
# according to our benchmarks on eager, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
def _do_native_uint8_resize_on_cpu(interpolation: InterpolationMode) -> bool:
    if interpolation == InterpolationMode.BILINEAR:
        if torch.compiler.is_compiling():
            return True
        else:
            return "AVX2" in torch.backends.cpu.get_cpu_capability()

    return interpolation == InterpolationMode.BICUBIC


@_register_kernel_internal(resize, torch.Tensor)
@_register_kernel_internal(resize, tv_tensors.Image)
def resize_image(
    image: torch.Tensor,
    size: Optional[List[int]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    interpolation = _check_interpolation(interpolation)
    antialias = False if antialias is None else antialias
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
    else:
        # The default of antialias is True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False

    shape = image.shape
    numel = image.numel()
    num_channels, old_height, old_width = shape[-3:]
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)

    if (new_height, new_width) == (old_height, old_width):
        return image
    elif numel > 0:
        dtype = image.dtype
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
        elif image.device.type == "cpu":
            if _do_native_uint8_resize_on_cpu(interpolation):
                acceptable_dtypes.append(torch.uint8)

        image = image.reshape(-1, num_channels, old_height, old_width)
        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
            image,
            size=[new_height, new_width],
            mode=interpolation.value,
            align_corners=align_corners,
            antialias=antialias,
        )

        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
                # This path is hit on non-AVX archs, or on GPU.
                image = image.clamp_(min=0, max=255)
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)

    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))


def _resize_image_pil(
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

    interpolation = _check_interpolation(interpolation)

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])


@_register_kernel_internal(resize, PIL.Image.Image)
def __resize_image_pil_dispatch(
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = True,
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)


def resize_mask(mask: torch.Tensor, size: Optional[List[int]], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
def _resize_mask_dispatch(
    inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
    return tv_tensors.wrap(output, like=inpt)


def resize_bounding_boxes(
    bounding_boxes: torch.Tensor,
    canvas_size: Tuple[int, int],
    size: Optional[List[int]],
    max_size: Optional[int] = None,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)

    if (new_height, new_width) == (old_height, old_width):
        return bounding_boxes, canvas_size

    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
    return (
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
        (new_height, new_width),
    )


@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _resize_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, size: Optional[List[int]], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


@_register_kernel_internal(resize, tv_tensors.Video)
def resize_video(
    video: torch.Tensor,
    size: Optional[List[int]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)


def affine(
    inpt: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
    if torch.jit.is_scripting():
        return affine_image(
            inpt,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


def _affine_parse_args(
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]

    return angle, translate, shear, center


def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    if torch.compiler.is_compiling() and not torch.jit.is_scripting():
        return _compute_affine_output_size_python(matrix, w, h)
    else:
        return _compute_affine_output_size_tensor(matrix, w, h)


def _compute_affine_output_size_tensor(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


def _compute_affine_output_size_python(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Mostly copied from PIL implementation:
    # The only difference is with transformed points as input matrix has zero translation part here and
    # PIL has a centered translation part.
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    a, b, c, d, e, f = matrix
    xx = []
    yy = []

    half_w = 0.5 * w
    half_h = 0.5 * h
    for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w, half_h), (-half_w, half_h)):
        nx = a * x + b * y + c
        ny = d * x + e * y + f
        xx.append(nx + half_w)
        yy.append(ny + half_h)

    nw = math.ceil(max(xx)) - math.floor(min(xx))
    nh = math.ceil(max(yy)) - math.floor(min(yy))
    return int(nw), int(nh)  # w, h


def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
    input_shape = img.shape
    output_height, output_width = grid.shape[1], grid.shape[2]
    num_channels, input_height, input_width = input_shape[-3:]
    output_shape = input_shape[:-3] + (num_channels, output_height, output_width)

    if img.numel() == 0:
        return img.reshape(output_shape)

    img = img.reshape(-1, num_channels, input_height, input_width)
    squashed_batch_size = img.shape[0]

    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

    if squashed_batch_size > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(squashed_batch_size, -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones(
            (squashed_batch_size, 1, input_height, input_width), dtype=float_img.dtype, device=float_img.device
        )
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            float_img = torch.where(mask < 0.5, fill_img.expand_as(float_img), float_img)
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img.reshape(output_shape)


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
    fill: _FillTypeJIT,
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


@_register_kernel_internal(affine, torch.Tensor)
@_register_kernel_internal(affine, tv_tensors.Image)
def affine_image(
    image: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    interpolation = _check_interpolation(interpolation)

    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    height, width = image.shape[-2:]

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]

    translate_f = [float(t) for t in translate]
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)


@_register_kernel_internal(affine, PIL.Image.Image)
def _affine_image_pil(
    image: PIL.Image.Image,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
    interpolation = _check_interpolation(interpolation)
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
        height, width = _get_size_image_pil(image)
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)


def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    expand: bool = False,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    if bounding_boxes.numel() == 0:
        return bounding_boxes, canvas_size

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
        convert_bounding_box_format(
            bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
        )
    ).reshape(-1, 4)

    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )

    if center is None:
        height, width = canvas_size
        center = [width * 0.5, height * 0.5]

    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
        .reshape(2, 3)
        .T
    )
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
    # 2) Now let's transform the points using affine matrix
    transformed_points = torch.matmul(points, transposed_affine_matrix)
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
    transformed_points = transformed_points.reshape(-1, 4, 2)
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
        height, width = canvas_size
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
            ],
            dtype=dtype,
            device=device,
        )
        new_points = torch.matmul(points, transposed_affine_matrix)
        tr = torch.amin(new_points, dim=0, keepdim=True)
        # Translate bounding boxes
        out_bboxes.sub_(tr.repeat((1, 2)))
        # Estimate meta-data for image with inverted=True
        affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
        canvas_size = (new_height, new_width)

    out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
    out_bboxes = convert_bounding_box_format(
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
    return out_bboxes, canvas_size


def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
        format=format,
        canvas_size=canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box


@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _affine_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
) -> tv_tensors.BoundingBoxes:
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
    return tv_tensors.wrap(output, like=inpt)


def affine_mask(
    mask: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = affine_image(
        mask,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
        fill=fill,
        center=center,
    )

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
def _affine_mask_dispatch(
    inpt: tv_tensors.Mask,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
    **kwargs,
) -> tv_tensors.Mask:
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(affine, tv_tensors.Video)
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    fill: _FillTypeJIT = None,
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    return affine_image(
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


def rotate(
    inpt: torch.Tensor,
    angle: float,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
    if torch.jit.is_scripting():
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)

    _log_api_usage_once(rotate)

    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
@_register_kernel_internal(rotate, tv_tensors.Image)
def rotate_image(
    image: torch.Tensor,
    angle: float,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    angle = angle % 360  # shift angle to [0, 360) range

    # fast path: transpose without affine transform
    if center is None:
        if angle == 0:
            return image.clone()
        if angle == 180:
            return torch.rot90(image, k=2, dims=(-2, -1))

        if expand or image.shape[-1] == image.shape[-2]:
            if angle == 90:
                return torch.rot90(image, k=1, dims=(-2, -1))
            if angle == 270:
                return torch.rot90(image, k=3, dims=(-2, -1))

    interpolation = _check_interpolation(interpolation)

    input_height, input_width = image.shape[-2:]

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [input_width, input_height])]

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])

    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

    output_width, output_height = (
        _compute_affine_output_size(matrix, input_width, input_height) if expand else (input_width, input_height)
    )
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=input_width, h=input_height, ow=output_width, oh=output_height)
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)


@_register_kernel_internal(rotate, PIL.Image.Image)
def _rotate_image_pil(
    image: PIL.Image.Image,
    angle: float,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
) -> PIL.Image.Image:
    interpolation = _check_interpolation(interpolation)

    return _FP.rotate(
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
    )


def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
        format=format,
        canvas_size=canvas_size,
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )


@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _rotate_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


def rotate_mask(
    mask: torch.Tensor,
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = rotate_image(
        mask,
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
        fill=fill,
        center=center,
    )

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
def _rotate_mask_dispatch(
    inpt: tv_tensors.Mask,
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
    **kwargs,
) -> tv_tensors.Mask:
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(rotate, tv_tensors.Video)
def rotate_video(
    video: torch.Tensor,
    angle: float,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


def pad(
    inpt: torch.Tensor,
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.Pad` for details."""
    if torch.jit.is_scripting():
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)

    _log_api_usage_once(pad)

    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)


def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]


@_register_kernel_internal(pad, torch.Tensor)
@_register_kernel_internal(pad, tv_tensors.Image)
def pad_image(
    image: torch.Tensor,
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
) -> torch.Tensor:
    # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

    if fill is None:
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
    else:
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)


def _pad_with_scalar_fill(
    image: torch.Tensor,
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
) -> torch.Tensor:
    shape = image.shape
    num_channels, height, width = shape[-3:]

    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False

        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
        image = _pad_symmetric(image, torch_padding)

    new_height, new_width = image.shape[-2:]

    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))


# TODO: This should be removed once torch_pad supports non-scalar padding values
def _pad_with_vector_fill(
    image: torch.Tensor,
    torch_padding: List[int],
    fill: List[float],
    padding_mode: str,
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding

    # We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
    # float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
    # value.
    fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)


@_register_kernel_internal(pad, tv_tensors.Mask)
def pad_mask(
    mask: torch.Tensor,
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
) -> torch.Tensor:
    if fill is None:
        fill = 0

    if isinstance(fill, (tuple, list)):
        raise ValueError("Non-scalar fill value is not supported")

    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)

    if needs_squeeze:
        output = output.squeeze(0)

    return output


def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    padding: List[int],
    padding_mode: str = "constant",
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

    left, right, top, bottom = _parse_pad_padding(padding)

    if format == tv_tensors.BoundingBoxFormat.XYXY:
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)

    height, width = canvas_size
    height += top + bottom
    width += left + right
    canvas_size = (height, width)

    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size


@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _pad_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


@_register_kernel_internal(pad, tv_tensors.Video)
def pad_video(
    video: torch.Tensor,
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
) -> torch.Tensor:
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)


def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
    if torch.jit.is_scripting():
        return crop_image(inpt, top=top, left=left, height=height, width=width)

    _log_api_usage_once(crop)

    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)


@_register_kernel_internal(crop, torch.Tensor)
@_register_kernel_internal(crop, tv_tensors.Image)
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)


def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    top: int,
    left: int,
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:

    # Crop or implicit pad if left and/or top have negative values:
    if format == tv_tensors.BoundingBoxFormat.XYXY:
        sub = [left, top, left, top]
    else:
        sub = [left, top, 0, 0]

    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
    canvas_size = (height, width)

    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size


@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _crop_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


@_register_kernel_internal(crop, tv_tensors.Mask)
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = crop_image(mask, top, left, height, width)

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(crop, tv_tensors.Video)
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    return crop_image(video, top, left, height, width)


def perspective(
    inpt: torch.Tensor,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
    if torch.jit.is_scripting():
        return perspective_image(
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
        )

    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )


def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


@_register_kernel_internal(perspective, torch.Tensor)
@_register_kernel_internal(perspective, tv_tensors.Image)
def perspective_image(
    image: torch.Tensor,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
    interpolation = _check_interpolation(interpolation)

    _assert_grid_transform_inputs(
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

    oh, ow = image.shape[-2:]
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)


@_register_kernel_internal(perspective, PIL.Image.Image)
def _perspective_image_pil(
    image: PIL.Image.Image,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> PIL.Image.Image:
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
    interpolation = _check_interpolation(interpolation)
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)


def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
    if bounding_boxes.numel() == 0:
        return bounding_boxes

    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)

    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
    bounding_boxes = (
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
    ).reshape(-1, 4)

    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
        dtype=dtype,
        device=device,
    )

    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
    transformed_points = numer_points.div_(denom_points)

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
    transformed_points = transformed_points.reshape(-1, 4, 2)
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
        format=tv_tensors.BoundingBoxFormat.XYXY,
        canvas_size=canvas_size,
    )

    # out_bboxes should be of shape [N boxes, 4]

    return convert_bounding_box_format(
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)


@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _perspective_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> tv_tensors.BoundingBoxes:
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
    return tv_tensors.wrap(output, like=inpt)


def perspective_mask(
    mask: torch.Tensor,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = perspective_image(
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
    )

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
def _perspective_mask_dispatch(
    inpt: tv_tensors.Mask,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> tv_tensors.Mask:
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(perspective, tv_tensors.Video)
def perspective_video(
    video: torch.Tensor,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
    return perspective_image(
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )


def elastic(
    inpt: torch.Tensor,
    displacement: torch.Tensor,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
    if torch.jit.is_scripting():
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)


elastic_transform = elastic


@_register_kernel_internal(elastic, torch.Tensor)
@_register_kernel_internal(elastic, tv_tensors.Image)
def elastic_image(
    image: torch.Tensor,
    displacement: torch.Tensor,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

    interpolation = _check_interpolation(interpolation)

    height, width = image.shape[-2:]
    device = image.device
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be cast to float32 and all computations will be done with float32
    # We can fix this later if needed

    expected_shape = (1, height, width, 2)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

    grid = _create_identity_grid((height, width), device=device, dtype=dtype).add_(
        displacement.to(dtype=dtype, device=device)
    )
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)

    if is_cpu_half:
        output = output.to(torch.float16)

    return output


@_register_kernel_internal(elastic, PIL.Image.Image)
def _elastic_image_pil(
    image: PIL.Image.Image,
    displacement: torch.Tensor,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
) -> PIL.Image.Image:
    t_img = pil_to_tensor(image)
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
    return to_pil_image(output, mode=image.mode)


def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
    sy, sx = size
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
    base_grid[..., 0].copy_(x_grid)

    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)

    return base_grid


def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    displacement: torch.Tensor,
) -> torch.Tensor:
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

    if bounding_boxes.numel() == 0:
        return bounding_boxes

    # TODO: add in docstring about approximation we are doing for grid inversion
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)

    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
    bounding_boxes = (
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
    ).reshape(-1, 4)

    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
    inv_grid = id_grid.sub_(displacement)

    # Get points from bboxes
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

    # Transform points:
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)

    transformed_points = transformed_points.reshape(-1, 4, 2)
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
        format=tv_tensors.BoundingBoxFormat.XYXY,
        canvas_size=canvas_size,
    )

    return convert_bounding_box_format(
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)


@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _elastic_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
    return tv_tensors.wrap(output, like=inpt)


def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
def _elastic_mask_dispatch(
    inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(elastic, tv_tensors.Video)
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)


def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
    if torch.jit.is_scripting():
        return center_crop_image(inpt, output_size=output_size)

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)


def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
        s = int(output_size)
        return [s, s]
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        return [output_size[0], output_size[0]]
    else:
        return list(output_size)


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


@_register_kernel_internal(center_crop, torch.Tensor)
@_register_kernel_internal(center_crop, tv_tensors.Image)
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)

        image_height, image_width = image.shape[-2:]
        if crop_width == image_width and crop_height == image_height:
            return image

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]


@_register_kernel_internal(center_crop, PIL.Image.Image)
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
    image_height, image_width = _get_size_image_pil(image)

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
        image = _pad_image_pil(image, padding_ltrb, fill=0)

        image_height, image_width = _get_size_image_pil(image)
        if crop_width == image_width and crop_height == image_height:
            return image

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)


def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    canvas_size: Tuple[int, int],
    output_size: List[int],
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )


@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _center_crop_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


@_register_kernel_internal(center_crop, tv_tensors.Mask)
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = center_crop_image(image=mask, output_size=output_size)

    if needs_squeeze:
        output = output.squeeze(0)

    return output


@_register_kernel_internal(center_crop, tv_tensors.Video)
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    return center_crop_image(video, output_size)


def resized_crop(
    inpt: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    """See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
    if torch.jit.is_scripting():
        return resized_crop_image(
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
        )

    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )


@_register_kernel_internal(resized_crop, torch.Tensor)
@_register_kernel_internal(resized_crop, tv_tensors.Image)
def resized_crop_image(
    image: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)


def _resized_crop_image_pil(
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
) -> PIL.Image.Image:
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)


@_register_kernel_internal(resized_crop, PIL.Image.Image)
def _resized_crop_image_pil_dispatch(
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[bool] = True,
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return _resized_crop_image_pil(
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
    format: tv_tensors.BoundingBoxFormat,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _resized_crop_bounding_boxes_dispatch(
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)


def resized_crop_mask(
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)


@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
def _resized_crop_mask_dispatch(
    inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
    return tv_tensors.wrap(output, like=inpt)


@_register_kernel_internal(resized_crop, tv_tensors.Video)
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[bool] = True,
) -> torch.Tensor:
    return resized_crop_image(
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


def five_crop(
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    """See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
    if torch.jit.is_scripting():
        return five_crop_image(inpt, size=size)

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)


def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
        s = int(size)
        size = [s, s]
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        s = size[0]
        size = [s, s]

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
def five_crop_image(
    image: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
    image_height, image_width = image.shape[-2:]

    if crop_width > image_width or crop_height > image_height:
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")

    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])

    return tl, tr, bl, br, center


@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
def _five_crop_image_pil(
    image: PIL.Image.Image, size: List[int]
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
    image_height, image_width = _get_size_image_pil(image)

    if crop_width > image_width or crop_height > image_height:
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")

    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])

    return tl, tr, bl, br, center


@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    return five_crop_image(video, size)


def ten_crop(
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    """See :class:`~torchvision.transforms.v2.TenCrop` for details."""
    if torch.jit.is_scripting():
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)


@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
def ten_crop_image(
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    non_flipped = five_crop_image(image, size)

    if vertical_flip:
        image = vertical_flip_image(image)
    else:
        image = horizontal_flip_image(image)

    flipped = five_crop_image(image, size)

    return non_flipped + flipped


@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
def _ten_crop_image_pil(
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
    non_flipped = _five_crop_image_pil(image, size)

    if vertical_flip:
        image = _vertical_flip_image_pil(image)
    else:
        image = _horizontal_flip_image_pil(image)

    flipped = _five_crop_image_pil(image, size)

    return non_flipped + flipped


@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    return ten_crop_image(video, size, vertical_flip=vertical_flip)