1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
# type: ignore
from __future__ import annotations
import collections.abc
import contextlib
from collections import defaultdict
from copy import copy
import torch
from torchvision import datasets, tv_tensors
from torchvision.transforms.v2 import functional as F
__all__ = ["wrap_dataset_for_transforms_v2"]
def wrap_dataset_for_transforms_v2(dataset, target_keys=None):
"""Wrap a ``torchvision.dataset`` for usage with :mod:`torchvision.transforms.v2`.
Example:
>>> dataset = torchvision.datasets.CocoDetection(...)
>>> dataset = wrap_dataset_for_transforms_v2(dataset)
.. note::
For now, only the most popular datasets are supported. Furthermore, the wrapper only supports dataset
configurations that are fully supported by ``torchvision.transforms.v2``. If you encounter an error prompting you
to raise an issue to ``torchvision`` for a dataset or configuration that you need, please do so.
The dataset samples are wrapped according to the description below.
Special cases:
* :class:`~torchvision.datasets.CocoDetection`: Instead of returning the target as list of dicts, the wrapper
returns a dict of lists. In addition, the key-value-pairs ``"boxes"`` (in ``XYXY`` coordinate format),
``"masks"`` and ``"labels"`` are added and wrap the data in the corresponding ``torchvision.tv_tensors``.
The original keys are preserved. If ``target_keys`` is omitted, returns only the values for the
``"image_id"``, ``"boxes"``, and ``"labels"``.
* :class:`~torchvision.datasets.VOCDetection`: The key-value-pairs ``"boxes"`` and ``"labels"`` are added to
the target and wrap the data in the corresponding ``torchvision.tv_tensors``. The original keys are
preserved. If ``target_keys`` is omitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.CelebA`: The target for ``target_type="bbox"`` is converted to the ``XYXY``
coordinate format and wrapped into a :class:`~torchvision.tv_tensors.BoundingBoxes` tv_tensor.
* :class:`~torchvision.datasets.Kitti`: Instead returning the target as list of dicts, the wrapper returns a
dict of lists. In addition, the key-value-pairs ``"boxes"`` and ``"labels"`` are added and wrap the data
in the corresponding ``torchvision.tv_tensors``. The original keys are preserved. If ``target_keys`` is
omitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.OxfordIIITPet`: The target for ``target_type="segmentation"`` is wrapped into a
:class:`~torchvision.tv_tensors.Mask` tv_tensor.
* :class:`~torchvision.datasets.Cityscapes`: The target for ``target_type="semantic"`` is wrapped into a
:class:`~torchvision.tv_tensors.Mask` tv_tensor. The target for ``target_type="instance"`` is *replaced* by
a dictionary with the key-value-pairs ``"masks"`` (as :class:`~torchvision.tv_tensors.Mask` tv_tensor) and
``"labels"``.
* :class:`~torchvision.datasets.WIDERFace`: The value for key ``"bbox"`` in the target is converted to ``XYXY``
coordinate format and wrapped into a :class:`~torchvision.tv_tensors.BoundingBoxes` tv_tensor.
Image classification datasets
This wrapper is a no-op for image classification datasets, since they were already fully supported by
:mod:`torchvision.transforms` and thus no change is needed for :mod:`torchvision.transforms.v2`.
Segmentation datasets
Segmentation datasets, e.g. :class:`~torchvision.datasets.VOCSegmentation`, return a two-tuple of
:class:`PIL.Image.Image`'s. This wrapper leaves the image as is (first item), while wrapping the
segmentation mask into a :class:`~torchvision.tv_tensors.Mask` (second item).
Video classification datasets
Video classification datasets, e.g. :class:`~torchvision.datasets.Kinetics`, return a three-tuple containing a
:class:`torch.Tensor` for the video and audio and a :class:`int` as label. This wrapper wraps the video into a
:class:`~torchvision.tv_tensors.Video` while leaving the other items as is.
.. note::
Only datasets constructed with ``output_format="TCHW"`` are supported, since the alternative
``output_format="THWC"`` is not supported by :mod:`torchvision.transforms.v2`.
Args:
dataset: the dataset instance to wrap for compatibility with transforms v2.
target_keys: Target keys to return in case the target is a dictionary. If ``None`` (default), selected keys are
specific to the dataset. If ``"all"``, returns the full target. Can also be a collection of strings for
fine grained access. Currently only supported for :class:`~torchvision.datasets.CocoDetection`,
:class:`~torchvision.datasets.VOCDetection`, :class:`~torchvision.datasets.Kitti`, and
:class:`~torchvision.datasets.WIDERFace`. See above for details.
"""
if not (
target_keys is None
or target_keys == "all"
or (isinstance(target_keys, collections.abc.Collection) and all(isinstance(key, str) for key in target_keys))
):
raise ValueError(
f"`target_keys` can be None, 'all', or a collection of strings denoting the keys to be returned, "
f"but got {target_keys}"
)
# Imagine we have isinstance(dataset, datasets.ImageNet). This will create a new class with the name
# "WrappedImageNet" at runtime that doubly inherits from VisionDatasetTVTensorWrapper (see below) as well as the
# original ImageNet class. This allows the user to do regular isinstance(wrapped_dataset, datasets.ImageNet) checks,
# while we can still inject everything that we need.
wrapped_dataset_cls = type(f"Wrapped{type(dataset).__name__}", (VisionDatasetTVTensorWrapper, type(dataset)), {})
# Since VisionDatasetTVTensorWrapper comes before ImageNet in the MRO, calling the class hits
# VisionDatasetTVTensorWrapper.__init__ first. Since we are never doing super().__init__(...), the constructor of
# ImageNet is never hit. That is by design, since we don't want to create the dataset instance again, but rather
# have the existing instance as attribute on the new object.
return wrapped_dataset_cls(dataset, target_keys)
class WrapperFactories(dict):
def register(self, dataset_cls):
def decorator(wrapper_factory):
self[dataset_cls] = wrapper_factory
return wrapper_factory
return decorator
# We need this two-stage design, i.e. a wrapper factory producing the actual wrapper, since some wrappers depend on the
# dataset instance rather than just the class, since they require the user defined instance attributes. Thus, we can
# provide a wrapping from the dataset class to the factory here, but can only instantiate the wrapper at runtime when
# we have access to the dataset instance.
WRAPPER_FACTORIES = WrapperFactories()
class VisionDatasetTVTensorWrapper:
def __init__(self, dataset, target_keys):
dataset_cls = type(dataset)
if not isinstance(dataset, datasets.VisionDataset):
raise TypeError(
f"This wrapper is meant for subclasses of `torchvision.datasets.VisionDataset`, "
f"but got a '{dataset_cls.__name__}' instead.\n"
f"For an example of how to perform the wrapping for custom datasets, see\n\n"
"https://pytorch.org/vision/main/auto_examples/plot_tv_tensors.html#do-i-have-to-wrap-the-output-of-the-datasets-myself"
)
for cls in dataset_cls.mro():
if cls in WRAPPER_FACTORIES:
wrapper_factory = WRAPPER_FACTORIES[cls]
if target_keys is not None and cls not in {
datasets.CocoDetection,
datasets.VOCDetection,
datasets.Kitti,
datasets.WIDERFace,
}:
raise ValueError(
f"`target_keys` is currently only supported for `CocoDetection`, `VOCDetection`, `Kitti`, "
f"and `WIDERFace`, but got {cls.__name__}."
)
break
elif cls is datasets.VisionDataset:
# TODO: If we have documentation on how to do that, put a link in the error message.
msg = f"No wrapper exists for dataset class {dataset_cls.__name__}. Please wrap the output yourself."
if dataset_cls in datasets.__dict__.values():
msg = (
f"{msg} If an automated wrapper for this dataset would be useful for you, "
f"please open an issue at https://github.com/pytorch/vision/issues."
)
raise TypeError(msg)
self._dataset = dataset
self._target_keys = target_keys
self._wrapper = wrapper_factory(dataset, target_keys)
# We need to disable the transforms on the dataset here to be able to inject the wrapping before we apply them.
# Although internally, `datasets.VisionDataset` merges `transform` and `target_transform` into the joint
# `transforms`
# https://github.com/pytorch/vision/blob/135a0f9ea9841b6324b4fe8974e2543cbb95709a/torchvision/datasets/vision.py#L52-L54
# some (if not most) datasets still use `transform` and `target_transform` individually. Thus, we need to
# disable all three here to be able to extract the untransformed sample to wrap.
self.transform, dataset.transform = dataset.transform, None
self.target_transform, dataset.target_transform = dataset.target_transform, None
self.transforms, dataset.transforms = dataset.transforms, None
def __getattr__(self, item):
with contextlib.suppress(AttributeError):
return object.__getattribute__(self, item)
return getattr(self._dataset, item)
def __getitem__(self, idx):
# This gets us the raw sample since we disabled the transforms for the underlying dataset in the constructor
# of this class
sample = self._dataset[idx]
sample = self._wrapper(idx, sample)
# Regardless of whether the user has supplied the transforms individually (`transform` and `target_transform`)
# or joint (`transforms`), we can access the full functionality through `transforms`
if self.transforms is not None:
sample = self.transforms(*sample)
return sample
def __len__(self):
return len(self._dataset)
# TODO: maybe we should use __getstate__ and __setstate__ instead of __reduce__, as recommended in the docs.
def __reduce__(self):
# __reduce__ gets called when we try to pickle the dataset.
# In a DataLoader with spawn context, this gets called `num_workers` times from the main process.
# We have to reset the [target_]transform[s] attributes of the dataset
# to their original values, because we previously set them to None in __init__().
dataset = copy(self._dataset)
dataset.transform = self.transform
dataset.transforms = self.transforms
dataset.target_transform = self.target_transform
return wrap_dataset_for_transforms_v2, (dataset, self._target_keys)
def raise_not_supported(description):
raise RuntimeError(
f"{description} is currently not supported by this wrapper. "
f"If this would be helpful for you, please open an issue at https://github.com/pytorch/vision/issues."
)
def identity(item):
return item
def identity_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
return sample
return wrapper
def pil_image_to_mask(pil_image):
return tv_tensors.Mask(pil_image)
def parse_target_keys(target_keys, *, available, default):
if target_keys is None:
target_keys = default
if target_keys == "all":
target_keys = available
else:
target_keys = set(target_keys)
extra = target_keys - available
if extra:
raise ValueError(f"Target keys {sorted(extra)} are not available")
return target_keys
def list_of_dicts_to_dict_of_lists(list_of_dicts):
dict_of_lists = defaultdict(list)
for dct in list_of_dicts:
for key, value in dct.items():
dict_of_lists[key].append(value)
return dict(dict_of_lists)
def wrap_target_by_type(target, *, target_types, type_wrappers):
if not isinstance(target, (tuple, list)):
target = [target]
wrapped_target = tuple(
type_wrappers.get(target_type, identity)(item) for target_type, item in zip(target_types, target)
)
if len(wrapped_target) == 1:
wrapped_target = wrapped_target[0]
return wrapped_target
def classification_wrapper_factory(dataset, target_keys):
return identity_wrapper_factory(dataset, target_keys)
for dataset_cls in [
datasets.Caltech256,
datasets.CIFAR10,
datasets.CIFAR100,
datasets.ImageNet,
datasets.MNIST,
datasets.FashionMNIST,
datasets.GTSRB,
datasets.DatasetFolder,
datasets.ImageFolder,
datasets.Imagenette,
]:
WRAPPER_FACTORIES.register(dataset_cls)(classification_wrapper_factory)
def segmentation_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
image, mask = sample
return image, pil_image_to_mask(mask)
return wrapper
for dataset_cls in [
datasets.VOCSegmentation,
]:
WRAPPER_FACTORIES.register(dataset_cls)(segmentation_wrapper_factory)
def video_classification_wrapper_factory(dataset, target_keys):
if dataset.video_clips.output_format == "THWC":
raise RuntimeError(
f"{type(dataset).__name__} with `output_format='THWC'` is not supported by this wrapper, "
f"since it is not compatible with the transformations. Please use `output_format='TCHW'` instead."
)
def wrapper(idx, sample):
video, audio, label = sample
video = tv_tensors.Video(video)
return video, audio, label
return wrapper
for dataset_cls in [
datasets.HMDB51,
datasets.Kinetics,
datasets.UCF101,
]:
WRAPPER_FACTORIES.register(dataset_cls)(video_classification_wrapper_factory)
@WRAPPER_FACTORIES.register(datasets.Caltech101)
def caltech101_wrapper_factory(dataset, target_keys):
if "annotation" in dataset.target_type:
raise_not_supported("Caltech101 dataset with `target_type=['annotation', ...]`")
return classification_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CocoDetection)
def coco_dectection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"segmentation",
"area",
"iscrowd",
"image_id",
"bbox",
"category_id",
# added by the wrapper
"boxes",
"masks",
"labels",
},
default={"image_id", "boxes", "labels"},
)
def segmentation_to_mask(segmentation, *, canvas_size):
from pycocotools import mask
if isinstance(segmentation, dict):
# if counts is a string, it is already an encoded RLE mask
if not isinstance(segmentation["counts"], str):
segmentation = mask.frPyObjects(segmentation, *canvas_size)
elif isinstance(segmentation, list):
segmentation = mask.merge(mask.frPyObjects(segmentation, *canvas_size))
else:
raise ValueError(f"COCO segmentation expected to be a dict or a list, got {type(segmentation)}")
return torch.from_numpy(mask.decode(segmentation))
def wrapper(idx, sample):
image_id = dataset.ids[idx]
image, target = sample
if not target:
return image, dict(image_id=image_id)
canvas_size = tuple(F.get_size(image))
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
if "image_id" in target_keys:
target["image_id"] = image_id
if "boxes" in target_keys:
target["boxes"] = F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
batched_target["bbox"],
format=tv_tensors.BoundingBoxFormat.XYWH,
canvas_size=canvas_size,
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
)
if "masks" in target_keys:
target["masks"] = tv_tensors.Mask(
torch.stack(
[
segmentation_to_mask(segmentation, canvas_size=canvas_size)
for segmentation in batched_target["segmentation"]
]
),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(batched_target["category_id"])
for target_key in target_keys - {"image_id", "boxes", "masks", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
return wrapper
WRAPPER_FACTORIES.register(datasets.CocoCaptions)(identity_wrapper_factory)
VOC_DETECTION_CATEGORIES = [
"__background__",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
VOC_DETECTION_CATEGORY_TO_IDX = dict(zip(VOC_DETECTION_CATEGORIES, range(len(VOC_DETECTION_CATEGORIES))))
@WRAPPER_FACTORIES.register(datasets.VOCDetection)
def voc_detection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"annotation",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
batched_instances = list_of_dicts_to_dict_of_lists(target["annotation"]["object"])
if "annotation" not in target_keys:
target = {}
if "boxes" in target_keys:
target["boxes"] = tv_tensors.BoundingBoxes(
[
[int(bndbox[part]) for part in ("xmin", "ymin", "xmax", "ymax")]
for bndbox in batched_instances["bndbox"]
],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(image.height, image.width),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(
[VOC_DETECTION_CATEGORY_TO_IDX[category] for category in batched_instances["name"]]
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.SBDataset)
def sbd_wrapper(dataset, target_keys):
if dataset.mode == "boundaries":
raise_not_supported("SBDataset with mode='boundaries'")
return segmentation_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CelebA)
def celeba_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["attr", "landmarks"]):
raise_not_supported("`CelebA` dataset with `target_type=['attr', 'landmarks', ...]`")
def wrapper(idx, sample):
image, target = sample
target = wrap_target_by_type(
target,
target_types=dataset.target_type,
type_wrappers={
"bbox": lambda item: F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
item,
format=tv_tensors.BoundingBoxFormat.XYWH,
canvas_size=(image.height, image.width),
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
),
},
)
return image, target
return wrapper
KITTI_CATEGORIES = ["Car", "Van", "Truck", "Pedestrian", "Person_sitting", "Cyclist", "Tram", "Misc", "DontCare"]
KITTI_CATEGORY_TO_IDX = dict(zip(KITTI_CATEGORIES, range(len(KITTI_CATEGORIES))))
@WRAPPER_FACTORIES.register(datasets.Kitti)
def kitti_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"type",
"truncated",
"occluded",
"alpha",
"bbox",
"dimensions",
"location",
"rotation_y",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
if target is None:
return image, target
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
if "boxes" in target_keys:
target["boxes"] = tv_tensors.BoundingBoxes(
batched_target["bbox"],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(image.height, image.width),
)
if "labels" in target_keys:
target["labels"] = torch.tensor([KITTI_CATEGORY_TO_IDX[category] for category in batched_target["type"]])
for target_key in target_keys - {"boxes", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.OxfordIIITPet)
def oxford_iiit_pet_wrapper_factor(dataset, target_keys):
def wrapper(idx, sample):
image, target = sample
if target is not None:
target = wrap_target_by_type(
target,
target_types=dataset._target_types,
type_wrappers={
"segmentation": pil_image_to_mask,
},
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.Cityscapes)
def cityscapes_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["polygon", "color"]):
raise_not_supported("`Cityscapes` dataset with `target_type=['polygon', 'color', ...]`")
def instance_segmentation_wrapper(mask):
# See https://github.com/mcordts/cityscapesScripts/blob/8da5dd00c9069058ccc134654116aac52d4f6fa2/cityscapesscripts/preparation/json2instanceImg.py#L7-L21
data = pil_image_to_mask(mask)
masks = []
labels = []
for id in data.unique():
masks.append(data == id)
label = id
if label >= 1_000:
label //= 1_000
labels.append(label)
return dict(masks=tv_tensors.Mask(torch.stack(masks)), labels=torch.stack(labels))
def wrapper(idx, sample):
image, target = sample
target = wrap_target_by_type(
target,
target_types=dataset.target_type,
type_wrappers={
"instance": instance_segmentation_wrapper,
"semantic": pil_image_to_mask,
},
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.WIDERFace)
def widerface_wrapper(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
"bbox",
"blur",
"expression",
"illumination",
"occlusion",
"pose",
"invalid",
},
default="all",
)
def wrapper(idx, sample):
image, target = sample
if target is None:
return image, target
target = {key: target[key] for key in target_keys}
if "bbox" in target_keys:
target["bbox"] = F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
target["bbox"], format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=(image.height, image.width)
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
)
return image, target
return wrapper
|