1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
"""
Generate a torchbench test report from a file containing the PR body.
Currently, only supports running tests on specified model names
Testing environment:
- Intel Xeon 8259CL @ 2.50 GHz, 24 Cores with disabled Turbo and HT
- Nvidia Tesla T4
- Nvidia Driver 470.82.01
- Python 3.8
- CUDA 11.3
"""
# Known issues:
# 1. Does not reuse the build artifact in other CI workflows
# 2. CI jobs are serialized because there is only one worker
import os
import boto3 # type: ignore[import]
import git # type: ignore[import]
import pathlib
import argparse
import subprocess
from pathlib import Path
from typing import List, Tuple
TORCHBENCH_CONFIG_NAME = "config.yaml"
TORCHBENCH_USERBENCHMARK_CONFIG_NAME = "ub-config.yaml"
MAGIC_PREFIX = "RUN_TORCHBENCH:"
MAGIC_TORCHBENCH_PREFIX = "TORCHBENCH_BRANCH:"
ABTEST_CONFIG_TEMPLATE = """# This config is automatically generated by run_torchbench.py
start: {control}
end: {treatment}
threshold: 100
direction: decrease
timeout: 720
tests:"""
S3_BUCKET = "ossci-metrics"
S3_PREFIX = "torchbench-pr-test"
S3_URL_BASE = f"https://{S3_BUCKET}.s3.amazonaws.com/"
class S3Client:
def __init__(self, bucket: str = S3_BUCKET, prefix: str = S3_PREFIX):
self.s3 = boto3.client('s3')
self.resource = boto3.resource('s3')
self.bucket = bucket
self.prefix = prefix
def upload_file(self, file_path: Path, filekey_prefix: str) -> None:
assert file_path.is_file(), f"Specified file path {file_path} does not exist or not file."
file_name = file_path.name
s3_key = f"{self.prefix}/{filekey_prefix}/{file_name}"
print(f"Uploading file {file_name} to S3 with key: {s3_key}")
self.s3.upload_file(str(file_path), self.bucket, s3_key)
# output the result URL
print(f"Uploaded the result file {file_name} to {S3_URL_BASE}{s3_key}")
def gen_abtest_config(control: str, treatment: str, models: List[str]) -> str:
d = {}
d["control"] = control
d["treatment"] = treatment
config = ABTEST_CONFIG_TEMPLATE.format(**d)
if models == ["ALL"]:
return config + "\n"
for model in models:
config = f"{config}\n - {model}"
config = config + "\n"
return config
def setup_gha_env(name: str, val: str) -> None:
fname = os.environ["GITHUB_ENV"]
content = f"{name}={val}\n"
with open(fname, "a") as fo:
fo.write(content)
def find_current_branch(repo_path: str) -> str:
repo = git.Repo(repo_path)
name: str = repo.active_branch.name
return name
def deploy_torchbench_config(output_dir: str, config: str, config_name: str = TORCHBENCH_CONFIG_NAME) -> None:
# Create test dir if needed
pathlib.Path(output_dir).mkdir(exist_ok=True)
# TorchBench config file name
config_path = os.path.join(output_dir, config_name)
with open(config_path, "w") as fp:
fp.write(config)
def get_valid_models(torchbench_path: str) -> List[str]:
benchmark_path = os.path.join(torchbench_path, "torchbenchmark", "models")
valid_models = [model for model in os.listdir(benchmark_path) if os.path.isdir(os.path.join(benchmark_path, model))]
return valid_models
def get_valid_userbenchmarks(torchbench_path: str) -> List[str]:
def is_valid_ub_dir(ub_path: str) -> bool:
return os.path.isdir(ub_path) and os.path.exists(os.path.join(ub_path, "__init__.py"))
ub_path = os.path.join(os.path.abspath(torchbench_path), "userbenchmark")
ubs = list(filter(is_valid_ub_dir, [os.path.join(ub_path, ubdir) for ubdir in os.listdir(ub_path)]))
valid_ubs = list(map(lambda x: os.path.basename(x), ubs))
return valid_ubs
def extract_models_from_pr(torchbench_path: str, prbody_file: str) -> Tuple[List[str], List[str]]:
model_list = []
userbenchmark_list = []
pr_list = []
with open(prbody_file, "r") as pf:
lines = map(lambda x: x.strip(), pf.read().splitlines())
magic_lines = list(filter(lambda x: x.startswith(MAGIC_PREFIX), lines))
if magic_lines:
# Only the first magic line will be recognized.
pr_list = list(map(lambda x: x.strip(), magic_lines[0][len(MAGIC_PREFIX):].split(",")))
valid_models = get_valid_models(torchbench_path)
valid_ubs = get_valid_userbenchmarks(torchbench_path)
for pr_bm in pr_list:
if pr_bm in valid_models or pr_bm == "ALL":
model_list.append(pr_bm)
elif pr_bm in valid_ubs:
userbenchmark_list.append(pr_bm)
else:
print(f"The model or benchmark {pr_bm} you specified does not exist in TorchBench suite. Please double check.")
exit(-1)
# Shortcut: if pr_list is ["ALL"], run all the model tests
if "ALL" in model_list:
model_list = ["ALL"]
return model_list, userbenchmark_list
def find_torchbench_branch(prbody_file: str) -> str:
branch_name: str = ""
with open(prbody_file, "r") as pf:
lines = map(lambda x: x.strip(), pf.read().splitlines())
magic_lines = list(filter(lambda x: x.startswith(MAGIC_TORCHBENCH_PREFIX), lines))
if magic_lines:
# Only the first magic line will be recognized.
branch_name = magic_lines[0][len(MAGIC_TORCHBENCH_PREFIX):].strip()
# If not specified, use main as the default branch
if not branch_name:
branch_name = "main"
return branch_name
def run_torchbench(pytorch_path: str, torchbench_path: str, output_dir: str) -> None:
# Copy system environment so that we will not override
env = dict(os.environ)
command = ["python", "bisection.py", "--work-dir", output_dir,
"--pytorch-src", pytorch_path, "--torchbench-src", torchbench_path,
"--config", os.path.join(output_dir, TORCHBENCH_CONFIG_NAME),
"--output", os.path.join(output_dir, "result.txt")]
print(f"Running torchbench command: {command}")
subprocess.check_call(command, cwd=torchbench_path, env=env)
def run_userbenchmarks(pytorch_path: str, torchbench_path: str, base_sha: str, head_sha: str,
userbenchmark: str, output_dir: str) -> None:
# Copy system environment so that we will not override
env = dict(os.environ)
command = ["python", "./.github/scripts/abtest.py",
"--pytorch-repo", pytorch_path,
"--base", base_sha,
"--head", head_sha,
"--userbenchmark", userbenchmark,
"--output-dir", output_dir]
print(f"Running torchbench userbenchmark command: {command}")
subprocess.check_call(command, cwd=torchbench_path, env=env)
def process_upload_s3(result_dir: str) -> None:
# validate result directory
result_dir_path = Path(result_dir)
assert result_dir_path.exists(), f"Specified result directory {result_dir} doesn't exist."
# upload all files to S3 bucket oss-ci-metrics
files = [x for x in result_dir_path.iterdir() if x.is_file()]
# upload file to S3 bucket
s3_client: S3Client = S3Client()
filekey_prefix = result_dir_path.name
for f in files:
s3_client.upload_file(f, filekey_prefix)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run TorchBench tests based on PR')
parser.add_argument('--pr-body', help="The file that contains body of a Pull Request")
subparsers = parser.add_subparsers(dest='command')
# parser for setup the torchbench branch name env
branch_parser = subparsers.add_parser("set-torchbench-branch")
# parser to run the torchbench branch
run_parser = subparsers.add_parser("run")
run_parser.add_argument('--pr-num', required=True, type=str, help="The Pull Request number")
run_parser.add_argument('--pr-base-sha', required=True, type=str, help="The Pull Request base hash")
run_parser.add_argument('--pr-head-sha', required=True, type=str, help="The Pull Request head hash")
run_parser.add_argument('--pytorch-path', required=True, type=str, help="Path to pytorch repository")
run_parser.add_argument('--torchbench-path', required=True, type=str, help="Path to TorchBench repository")
# parser to upload results to S3
upload_parser = subparsers.add_parser("upload-s3")
upload_parser.add_argument('--result-dir', required=True, type=str, help="Path to benchmark output")
args = parser.parse_args()
if args.command == 'set-torchbench-branch':
branch_name = find_torchbench_branch(args.pr_body)
# env name: "TORCHBENCH_BRANCH"
setup_gha_env(MAGIC_TORCHBENCH_PREFIX[:-1], branch_name)
elif args.command == 'run':
output_dir: str = os.path.join(os.environ["HOME"], ".torchbench", "bisection", f"pr{args.pr_num}")
# Assert the current branch in args.torchbench_path is the same as the one specified in pr body
branch_name = find_torchbench_branch(args.pr_body)
current_branch = find_current_branch(args.torchbench_path)
assert branch_name == current_branch, f"Torchbench repo {args.torchbench_path} is on branch {current_branch}, \
but user specified to run on branch {branch_name}."
print(f"Ready to run TorchBench with benchmark. Result will be saved in the directory: {output_dir}.")
# Identify the specified models and userbenchmarks
models, userbenchmarks = extract_models_from_pr(args.torchbench_path, args.pr_body)
if models:
torchbench_config = gen_abtest_config(args.pr_base_sha, args.pr_head_sha, models)
deploy_torchbench_config(output_dir, torchbench_config)
run_torchbench(pytorch_path=args.pytorch_path, torchbench_path=args.torchbench_path, output_dir=output_dir)
if userbenchmarks:
assert len(userbenchmarks) == 1, \
"We don't support running multiple userbenchmarks in single workflow yet." \
"If you need, please submit a feature request."
run_userbenchmarks(pytorch_path=args.pytorch_path, torchbench_path=args.torchbench_path,
base_sha=args.pr_base_sha, head_sha=args.pr_head_sha,
userbenchmark=userbenchmarks[0], output_dir=output_dir)
if not models and not userbenchmarks:
print("Can't parse valid models or userbenchmarks from the pr body. Quit.")
exit(-1)
elif args.command == 'upload-s3':
process_upload_s3(args.result_dir)
else:
print(f"The command {args.command} is not supported.")
exit(-1)
|