1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
//------------------------------------------------------------------------------
static void setupBatchNorm_nhwc(Fusion* fusion, DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
FusionGuard fg(fusion);
const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;
// setup fusion
auto input = makeContigTensor(4, dtype);
auto weight = makeContigTensor(1, dtype);
auto bias = makeContigTensor(1, dtype);
auto running_mean = makeContigTensor(1, DataType::Float);
auto running_var = makeContigTensor(1, DataType::Float);
fusion->addInput(input);
fusion->addInput(weight);
fusion->addInput(bias);
fusion->addInput(running_mean);
fusion->addInput(running_var);
if (dtype == DataType::Half) {
input = castOp(DataType::Float, input);
weight = castOp(DataType::Float, weight);
bias = castOp(DataType::Float, bias);
}
auto momentum_ptr = IrBuilder::create<Double>(kMomentum);
auto eps_ptr = IrBuilder::create<Double>(kEps);
auto result = batch_norm(
input,
weight,
bias,
running_mean,
running_var,
kTraining,
momentum_ptr,
eps_ptr,
true);
auto output = result.output;
if (dtype == DataType::Half) {
output = castOp(DataType::Half, output);
}
fusion->addOutput(output);
}
static void NvFuserScheduler_BatchNorm_nhwc(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(2),
benchmark_state.range(2),
benchmark_state.range(1)};
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor at_x = at::randn(input_shape, options);
at::Tensor at_weight = at::ones({input_shape[3]}, options);
at::Tensor at_bias = at::zeros({input_shape[3]}, options);
at::Tensor at_run_mean = at::zeros({input_shape[3]}, fp32_options);
at::Tensor at_run_var = at::ones({input_shape[3]}, fp32_options);
std::vector<c10::IValue> aten_inputs(
{at_x, at_weight, at_bias, at_run_mean, at_run_var});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
((2 * (at_x.numel() + at_weight.numel() + at_bias.numel())) *
int64_t(dataTypeSize(dtype)) +
(2 * (at_run_mean.numel() + at_run_var.numel()) *
int64_t(dataTypeSize(DataType::Float)))));
}
//------------------------------------------------------------------------------
static void Baseline_BatchNorm_nhwc(
benchmark::State& benchmark_state,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
const float kMomentum = 0.1;
const float kEps = 1e-5;
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2),
benchmark_state.range(2)};
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor at_x = at::randn(input_shape, options)
.contiguous(c10::MemoryFormat::ChannelsLast);
at::Tensor at_weight = at::ones({input_shape[1]}, options);
at::Tensor at_bias = at::zeros({input_shape[1]}, options);
at::Tensor at_run_mean = at::zeros({input_shape[1]}, fp32_options);
at::Tensor at_run_var = at::ones({input_shape[1]}, fp32_options);
auto ato_weight = c10::optional<at::Tensor>(at_weight);
auto ato_bias = c10::optional<at::Tensor>(at_bias);
auto ato_run_mean = c10::optional<at::Tensor>(at_run_mean);
auto ato_run_var = c10::optional<at::Tensor>(at_run_var);
auto output = at::batch_norm(
at_x,
ato_weight,
ato_bias,
ato_run_mean,
ato_run_var,
true,
kMomentum,
kEps,
true);
clearL2Cache();
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
at::_ops::_batch_norm_impl_index::call(
at_x,
ato_weight,
ato_bias,
ato_run_mean,
ato_run_var,
true,
kMomentum,
kEps,
true);
benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
cudaDeviceSynchronize();
clearL2Cache();
cudaDeviceSynchronize();
}
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
((2 * (at_x.numel() + at_weight.numel() + at_bias.numel())) *
int64_t(dataTypeSize(dtype)) +
(2 * (at_run_mean.numel() + at_run_var.numel()) *
int64_t(dataTypeSize(DataType::Float)))));
}
//------------------------------------------------------------------------------
static void Baseline_BatchNorm_nhwc_cuDNN_fp32(
benchmark::State& benchmark_state) {
Baseline_BatchNorm_nhwc(benchmark_state, DataType::Float);
}
static void Baseline_BatchNorm_nhwc_cuDNN_fp16(
benchmark::State& benchmark_state) {
Baseline_BatchNorm_nhwc(benchmark_state, DataType::Half);
}
// Simple aliases just for names in the printed output
static void Baseline_ResNet_BatchNorm_nhwc_cuDNN_fp16(benchmark::State& benchmark_state) {
Baseline_BatchNorm_nhwc(benchmark_state, DataType::Half);
}
static void Baseline_ResNext_BatchNorm_nhwc_cuDNN_fp16(benchmark::State& benchmark_state) {
Baseline_BatchNorm_nhwc(benchmark_state, DataType::Half);
}
//------------------------------------------------------------------------------
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_BatchNorm_nhwc_fp32,
setupBatchNorm_nhwc,
NvFuserScheduler_BatchNorm_nhwc,
DataType::Float);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_nhwc_fp32)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 64}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_nhwc_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_BatchNorm_nhwc_fp16,
setupBatchNorm_nhwc,
NvFuserScheduler_BatchNorm_nhwc,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_nhwc_fp16)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_nhwc_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
BENCHMARK(Baseline_BatchNorm_nhwc_cuDNN_fp32)
// ->RangeMultiplier(2)
// cuDNN didn't make it to 1024
->Ranges({{64, 512}, {32, 128}, {2, 64}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_nhwc_cuDNN_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_nhwc_cuDNN_fp16)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_nhwc_cuDNN_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
// RESNET and REXNEXT benchmarks
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_ResNet_BatchNorm_nhwc_fp16,
setupBatchNorm_nhwc,
NvFuserScheduler_BatchNorm_nhwc,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_ResNet_BatchNorm_nhwc_fp16)
->Args({256, 64, 112})
->Args({256, 64, 56})
->Args({256, 256, 56})
->Args({256, 128, 56})
->Args({256, 128, 28})
->Args({256, 512, 28})
->Args({256, 256, 28})
->Args({256, 256, 14})
->Args({256, 1024, 14})
->Args({256, 512, 14})
->Args({256, 512, 7})
->Args({256, 2048, 7})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_ResNext_BatchNorm_nhwc_fp16,
setupBatchNorm_nhwc,
NvFuserScheduler_BatchNorm_nhwc,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_ResNext_BatchNorm_nhwc_fp16)
->Args({128, 64, 112})
->Args({128, 128, 56})
->Args({128, 256, 56})
->Args({128, 128, 56})
->Args({128, 256, 28})
->Args({128, 512, 28})
->Args({128, 512, 14})
->Args({128, 1024, 14})
->Args({128, 1024, 7})
->Args({128, 2048, 7})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
// Permutation of TIMM sizes
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_BatchNorm_nhwc_fp16,
setupBatchNorm_nhwc,
NvFuserScheduler_BatchNorm_nhwc,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_BatchNorm_nhwc_fp16)
->ArgsProduct(
{{8, 16, 32, 64, 128, 256},
{24, 40, 48, 56, 72, 152, 184, 200, 368},
{7, 14, 28, 56, 112}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_BatchNorm_nhwc_fp16)
->ArgsProduct(
{{128, 256, 512, 1024, 2048},
{24, 40, 48, 56, 72, 152},
{7, 14, 28, 56}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
BENCHMARK(Baseline_ResNet_BatchNorm_nhwc_cuDNN_fp16)
->Args({256, 64, 112})
->Args({256, 64, 56})
->Args({256, 256, 56})
->Args({256, 128, 56})
->Args({256, 128, 28})
->Args({256, 512, 28})
->Args({256, 256, 28})
->Args({256, 256, 14})
->Args({256, 1024, 14})
->Args({256, 512, 14})
->Args({256, 512, 7})
->Args({256, 2048, 7})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_ResNext_BatchNorm_nhwc_cuDNN_fp16)
->Args({128, 64, 112})
->Args({128, 128, 56})
->Args({128, 256, 56})
->Args({128, 128, 56})
->Args({128, 256, 28})
->Args({128, 512, 28})
->Args({128, 512, 14})
->Args({128, 1024, 14})
->Args({128, 1024, 7})
->Args({128, 2048, 7})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
|