1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
// Based on NVFuserTest.FusionBiasGeluBwd_CUDA
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
static void setupFusion(Fusion* fusion) {
FusionGuard fg(fusion);
const float k_079 = 0.79788456;
const float k_004 = 0.044715;
const float k_010 = 0.1070322243;
// gradient tensor
auto t0 = makeContigTensor(3, DataType::Half);
fusion->addInput(t0);
auto t1 = castOp(DataType::Float, t0);
// bias tensor
auto t2 = makeContigTensor(1, DataType::Half);
fusion->addInput(t2);
auto t3 = castOp(DataType::Float, t2);
// input tensor
auto t4 = makeContigTensor(3, DataType::Half);
fusion->addInput(t4);
auto t5 = castOp(DataType::Float, t4);
auto t6 = broadcast(t3, {true, true, false});
auto t7 = add(t6, t5);
auto t8 = mul(t7, IrBuilder::create<Double>(k_079));
auto t9 = mul(t7, IrBuilder::create<Double>(k_004));
auto t10 = mul(t9, t7);
auto t11 = add(t10, IrBuilder::create<Int>(1));
auto t12 = mul(t8, t11);
auto t13 = unaryOp(UnaryOpType::Tanh, t12);
auto t14 = mul(t7, IrBuilder::create<Double>(0.5));
auto t15 = mul(t13, t13);
auto t16 = unaryOp(UnaryOpType::Neg, t15);
auto t17 = add(t16, IrBuilder::create<Int>(1));
auto t18 = mul(t7, IrBuilder::create<Double>(k_010));
auto t19 = mul(t18, t7);
auto t20 = add(t19, IrBuilder::create<Double>(k_079));
auto t21 = mul(t17, t20);
auto t22 = mul(t14, t21);
auto t23 = add(t13, IrBuilder::create<Int>(1));
auto t24 = mul(t23, IrBuilder::create<Double>(0.5));
auto t25 = add(t22, t24);
auto t26 = mul(t25, t1);
// Save float output for validation
fusion->addOutput(t26);
auto t27 = castOp(DataType::Half, t26);
fusion->addOutput(t27);
}
static std::vector<c10::IValue> setupInputs() {
at::manual_seed(0);
auto options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
std::vector<int64_t> input_shape{6, 512, 4096};
std::vector<int64_t> bias_shape{4096};
auto at_input = at::randn(input_shape, options);
auto at_bias = at::randn(bias_shape, options);
auto at_grad = at::randn(input_shape, options);
return {at_grad, at_bias, at_input};
}
//------------------------------------------------------------------------------
static void GeluBackward_SetupFusion(benchmark::State& benchmark_state) {
for (auto _ : benchmark_state) {
Fusion fusion;
setupFusion(&fusion);
}
}
BENCHMARK(GeluBackward_SetupFusion)->Unit(benchmark::kMicrosecond);
//------------------------------------------------------------------------------
static void GeluBackward_AutoSchedule(benchmark::State& benchmark_state) {
for (auto _ : benchmark_state) {
// Setup (not included in the measurement)
benchmark_state.PauseTiming();
Fusion fusion;
setupFusion(&fusion);
std::vector<c10::IValue> inputs = setupInputs();
benchmark_state.ResumeTiming();
// Auto-schedule
schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
}
}
BENCHMARK(GeluBackward_AutoSchedule)->Unit(benchmark::kMicrosecond);
//------------------------------------------------------------------------------
static void GeluBackward_Lower(benchmark::State& benchmark_state) {
constexpr int kHiddenFeatures = 512;
constexpr int kBatchSize = 64;
Fusion fusion;
// setup fusion
setupFusion(&fusion);
// inputs
std::vector<c10::IValue> inputs = setupInputs();
schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
for (auto _ : benchmark_state) {
GpuLower gpu_lower(&fusion);
}
}
BENCHMARK(GeluBackward_Lower)->Unit(benchmark::kMillisecond);
//------------------------------------------------------------------------------
static void GeluBackward_Compile(benchmark::State& benchmark_state) {
Fusion fusion;
// setup fusion
setupFusion(&fusion);
// inputs
std::vector<c10::IValue> inputs = setupInputs();
schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
for (auto _ : benchmark_state) {
FusionExecutor executor;
executor.compileFusion(&fusion);
}
}
BENCHMARK(GeluBackward_Compile)->Unit(benchmark::kMillisecond);
//------------------------------------------------------------------------------
static void GeluBackward_RunFusion(benchmark::State& benchmark_state) {
Fusion fusion;
// setup fusion
setupFusion(&fusion);
// inputs
std::vector<c10::IValue> inputs = setupInputs();
// outputs
std::vector<at::Tensor> outputs;
auto lparams = schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
FusionExecutor executor;
executor.compileFusion(&fusion);
C10_CUDA_CHECK(cudaDeviceSynchronize());
for (auto _ : benchmark_state) {
outputs = executor.runFusion(c10::ArrayRef<c10::IValue>(inputs), lparams);
C10_CUDA_CHECK(cudaDeviceSynchronize());
clearL2Cache();
}
}
BENCHMARK(GeluBackward_RunFusion)->Unit(benchmark::kMicrosecond);
//------------------------------------------------------------------------------
static void GeluBackward_RunFusion_GpuOnly(benchmark::State& benchmark_state) {
Fusion fusion;
// setup fusion
setupFusion(&fusion);
// inputs
std::vector<c10::IValue> inputs = setupInputs();
// outputs
std::vector<at::Tensor> outputs;
auto lparams = schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
FusionExecutor executor;
executor.setMeasureKernelTimeFlag(true);
executor.compileFusion(&fusion);
C10_CUDA_CHECK(cudaDeviceSynchronize());
for (auto _ : benchmark_state) {
outputs = executor.runFusion(c10::ArrayRef<c10::IValue>(inputs), lparams);
benchmark_state.SetIterationTime(executor.kernelTimeMs() / 1000.0);
clearL2Cache();
}
}
BENCHMARK(GeluBackward_RunFusion_GpuOnly)
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
static void GeluBackward_RunFusion_CpuOnly(benchmark::State& benchmark_state) {
Fusion fusion;
// setup fusion
setupFusion(&fusion);
// inputs
std::vector<c10::IValue> inputs = setupInputs();
// outputs
std::vector<at::Tensor> outputs;
auto lparams = schedulePointwise(&fusion, c10::ArrayRef<c10::IValue>(inputs));
FusionExecutor executor;
executor.setExecuteKernelFlag(false);
executor.compileFusion(&fusion);
for (auto _ : benchmark_state) {
outputs = executor.runFusion(c10::ArrayRef<c10::IValue>(inputs), lparams);
}
}
BENCHMARK(GeluBackward_RunFusion_CpuOnly)->Unit(benchmark::kMicrosecond);
|