1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
static auto getLayerBackwardNormRuntime(
std::unique_ptr<Fusion> fusion_ptr,
std::unique_ptr<FusionExecutorCache>& fec,
std::vector<at::IValue>& aten_inputs,
std::vector<int64_t>& shape,
std::vector<int64_t>& norm_shape) {
Fusion& fusion = *fusion_ptr.get();
const size_t kM = shape.size();
const size_t kN = norm_shape.size();
const size_t kOuterNumDims = kM - kN;
std::vector<int64_t> outer_shape;
for (size_t idx = 0; idx < kOuterNumDims; ++idx) {
outer_shape.push_back(shape[idx]);
}
for (size_t idx = kOuterNumDims; idx < kM; ++idx) {
outer_shape.push_back(1);
}
auto grad_out = makeSymbolicTensor(shape.size());
auto input = makeSymbolicTensor(shape.size());
auto mean = makeConcreteTensor(outer_shape);
auto rstd = makeConcreteTensor(outer_shape);
auto weight = makeSymbolicTensor(norm_shape.size());
auto bias = makeSymbolicTensor(norm_shape.size());
fusion.addInput(grad_out);
fusion.addInput(input);
fusion.addInput(mean);
fusion.addInput(rstd);
fusion.addInput(weight);
fusion.addInput(bias);
auto grads = layer_norm_backward(
grad_out,
input,
norm_shape,
mean,
rstd,
weight,
bias,
{true, true, true});
fusion.addOutput(grads.grad_input);
fusion.addOutput(grads.grad_weight);
fusion.addOutput(grads.grad_bias);
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor aten_grad_out = at::randn(shape, options);
at::Tensor aten_input = at::randn(shape, options);
at::Tensor aten_weight = at::randn(norm_shape, options);
at::Tensor aten_bias = at::randn(norm_shape, options);
auto at_weight = c10::optional<at::Tensor>(aten_weight);
auto at_bias = c10::optional<at::Tensor>(aten_bias);
const float kEps = 1e-5;
auto aten_results =
at::native_layer_norm(aten_input, norm_shape, at_weight, at_bias, kEps);
auto aten_output = std::get<0>(aten_results);
auto aten_mean = std::get<1>(aten_results);
auto aten_rstd = std::get<2>(aten_results);
fec = std::make_unique<FusionExecutorCache>(std::move(fusion_ptr));
aten_inputs = {
aten_grad_out, aten_input, aten_mean, aten_rstd, aten_weight, aten_bias};
auto cg_outputs = fec->runFusionWithInputs(aten_inputs);
return fec->getMostRecentKernelRuntime();
}
static void LayerNormBackward_HeuristicLookup(
benchmark::State& benchmark_state) {
std::unique_ptr<Fusion> fusion_ptr = std::make_unique<Fusion>();
FusionGuard fg(fusion_ptr.get());
// PreAllocate
std::unique_ptr<FusionExecutorCache> fec;
std::vector<at::IValue> aten_inputs;
std::vector<int64_t> shape{20, 100, 35, 67};
std::vector<int64_t> norm_shape{67};
auto runtime = getLayerBackwardNormRuntime(
std::move(fusion_ptr), fec, aten_inputs, shape, norm_shape);
KernelArgumentHolder args = KernelArgumentHolder::createKernelArgumentHolder(aten_inputs);
TORCH_INTERNAL_ASSERT(
runtime->getMaybeHeuristicsFor(args).has_value());
for (auto _ : benchmark_state) {
// Setup (not included in the measurement)
runtime->getMaybeHeuristicsFor(args);
}
}
static auto getLayerForwardNormRuntime(
std::unique_ptr<Fusion> fusion_ptr,
std::unique_ptr<FusionExecutorCache>& fec,
std::vector<at::IValue>& aten_inputs,
std::vector<int64_t>& shape,
std::vector<int64_t>& norm_shape) {
Fusion& fusion = *fusion_ptr.get();
const float kEps = 1e-5;
Double* eps_ptr = IrBuilder::create<Double>(kEps);
auto input = makeSymbolicTensor(shape.size());
fusion.addInput(input);
auto result = layer_norm(input, norm_shape, nullptr, nullptr, eps_ptr);
fusion.addOutput(result.output);
fusion.addOutput(result.mean);
fusion.addOutput(result.invstd);
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor aten_input = at::randn(shape, options);
fec = std::make_unique<FusionExecutorCache>(std::move(fusion_ptr));
aten_inputs = {aten_input};
auto cg_outputs = fec->runFusionWithInputs(aten_inputs);
return fec->getMostRecentKernelRuntime();
}
static void LayerNormForward_HeuristicLookup(
benchmark::State& benchmark_state) {
std::unique_ptr<Fusion> fusion_ptr = std::make_unique<Fusion>();
FusionGuard fg(fusion_ptr.get());
// PreAllocate
std::unique_ptr<FusionExecutorCache> fec;
std::vector<at::IValue> aten_inputs;
std::vector<int64_t> shape{20, 100, 35, 67};
std::vector<int64_t> norm_shape{67};
auto runtime = getLayerForwardNormRuntime(
std::move(fusion_ptr), fec, aten_inputs, shape, norm_shape);
KernelArgumentHolder args = KernelArgumentHolder::createKernelArgumentHolder(aten_inputs);
TORCH_INTERNAL_ASSERT(
runtime->getMaybeHeuristicsFor(args).has_value());
for (auto _ : benchmark_state) {
// Setup (not included in the measurement)
runtime->getMaybeHeuristicsFor(args);
}
}
BENCHMARK(LayerNormBackward_HeuristicLookup)->Unit(benchmark::kMicrosecond);
BENCHMARK(LayerNormForward_HeuristicLookup)->Unit(benchmark::kMicrosecond);
|