1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
static void setup_vit_base_patch16_224_bcast7(Fusion* fusion, void* null) {
FusionGuard fg(fusion);
auto t2 = makeContigTensor(3, DataType::Float);
auto t3 = TensorViewBuilder()
.shape({-1, -1, 1})
.dtype(DataType::Float)
.contiguity({true, true, false})
.build();
auto t4 = TensorViewBuilder()
.shape({-1, -1, 1})
.dtype(DataType::Float)
.contiguity({true, true, false})
.build();
auto t7 = makeContigTensor(3, DataType::Half);
fusion->addInput(t2);
fusion->addInput(t3);
fusion->addInput(t4);
fusion->addInput(t7);
auto t8 = castOp(DataType::Float, t7);
auto t9 = set(t8);
auto t10 = sub(t2, t3);
auto t11 = mul(t10, t4);
auto t25 = mul(t9, t11);
auto t26 = sum(t25, {0, 1});
auto t36 = set(t26);
auto t27 = sum(t9, {0, 1});
auto t37 = set(t27);
auto t39 = castOp(DataType::Half, t11);
fusion->addOutput(t36);
fusion->addOutput(t37);
fusion->addOutput(t39);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_bcast7(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t2 = at::randn(input_shape, fp32_options);
auto t3 = at::randn({input_shape[0], input_shape[1], 1}, fp32_options);
auto t4 = at::randn({input_shape[0], input_shape[1], 1}, fp32_options);
auto t7 = at::randn(input_shape, fp16_options);
std::vector<c10::IValue> aten_inputs({t2, t3, t4, t7});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// full tensor - float + halfx2 - t2, t7, t39
// Inner most dimension only - floatx2 - t36, t37
// Outer two dimensions only - floatx2 - t3, t4
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
// t2 + t7 t3 + t4 t36 + t37
t2.numel() * (4 + 2) + t3.numel() * 4 * 2 + input_shape[2] * (4 * 2) +
// T39
t2.numel() * 2);
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast7,
setup_vit_base_patch16_224_bcast7,
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast7,
nullptr);
// pwise case, broadcasting both sides
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast7)
->Args({64, 197, 768})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void setup_vit_base_patch16_224_bcast5(Fusion* fusion, void* null) {
FusionGuard fg(fusion);
auto t2 = makeContigTensor(3, DataType::Float);
auto t5 = makeContigTensor(1, DataType::Float);
auto t3 = makeContigTensor(3, DataType::Half);
auto t0 = makeContigTensor(1, DataType::Float);
auto t1 = makeContigTensor(1, DataType::Float);
fusion->addInput(t2);
fusion->addInput(t5);
fusion->addInput(t3);
fusion->addInput(t0);
fusion->addInput(t1);
std::vector<bool> bcast_pattern0({true, true, false});
std::vector<bool> bcast_pattern1({false, false, true});
auto t4 = castOp(DataType::Float, t3);
auto t6 = set(t5);
auto t7 = broadcast(t6, bcast_pattern0);
auto t8 = add(t4, t7);
auto t9 = randlike(t8);
auto d34 =
sub(IrBuilder::create<Double>(1.0), IrBuilder::create<Double>(0.0));
auto t10 = lt(t9, d34);
auto t11 = castOp(DataType::Float, t10);
auto t12 = mul(t8, t11);
auto b36 = eq(d34, IrBuilder::create<Double>(0.0));
auto d37 = castOp(DataType::Double, b36);
auto d38 = add(d37, d34);
auto d40 = div(IrBuilder::create<Double>(1.0), d38);
auto t13 = mul(t12, d40);
auto t14 = set(t13);
auto t15 = add(t2, t14);
auto t16 = set(t15);
auto t36 = sum(t16, {2});
auto d151 = castOp(DataType::Double, t2->axis(2)->extent());
auto d152 = mul(IrBuilder::create<Double>(1.0), d151);
auto t19 = div(t36, d152);
auto t22 = broadcast(t19, bcast_pattern1);
auto t23 = sub(t16, t22);
auto t37 = mul(t23, t23);
auto t20 = sum(t37, {2});
auto t24 = broadcast(t20, bcast_pattern1);
auto d95 = castOp(DataType::Double, t2->axis(2)->extent());
auto d96 = mul(IrBuilder::create<Double>(1.0), d95);
auto d105 = reciprocal(d95);
auto t25 = mul(t24, d105);
auto t26 = add(t25, IrBuilder::create<Double>(1e-6));
auto t27 = rsqrt(t26);
auto t28 = mul(t23, t27);
auto t17 = set(t1);
auto t29 = broadcast(t17, bcast_pattern0);
auto t30 = mul(t28, t29);
auto t18 = set(t0);
auto t31 = broadcast(t18, bcast_pattern0);
auto t32 = add(t30, t31);
auto t33 = set(t32);
auto t34 = castOp(DataType::Half, t33);
fusion->addOutput(t16); // full 3d float
fusion->addOutput(t10); // full 3d bool
fusion->addOutput(t22); // bcast last dim float
fusion->addOutput(t27); // bcast last dim float
fusion->addOutput(t18); // passthrough t0 float
fusion->addOutput(t17); // passthrough t1 float
fusion->addOutput(t34); // full 3d half
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_bcast5(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t2 = at::randn(input_shape, fp32_options);
auto t5 = at::randn({input_shape[2]}, fp32_options);
auto t3 = at::randn(input_shape, fp16_options);
auto t0 = at::randn({input_shape[2]}, fp32_options);
auto t1 = at::randn({input_shape[2]}, fp32_options);
std::vector<c10::IValue> aten_inputs({t2, t5, t3, t0, t1});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// Full tensor - floatx2, halfx2, bool - t2, t16, t3, t34, t16
// Inner most dim only - floatx5 - t5, t0, t1, t7, t17
// Outer two dims only - floatx2 - t22, t27
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
t2.numel() * (2 * 4 + 2 * 2 + 1) + t5.numel() * 5 * 4 +
input_shape[0] * input_shape[1] * 2 * 4);
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast5_NCHW,
setup_vit_base_patch16_224_bcast5,
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast5,
nullptr);
// Broadcast on both sides
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_vit_base_patch16_224_bcast5_NCHW)
->Args({64, 197, 768})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void setup_vit_base_patch16_224_bcast_outer2(
Fusion* fusion,
void* null) {
FusionGuard fg(fusion);
auto t0 = makeContigTensor(3, DataType::Half);
auto t2 = makeContigTensor(1, DataType::Float);
fusion->addInput(t0);
fusion->addInput(t2);
auto t1 = castOp(DataType::Float, t0);
auto t3 = set(t2);
auto t4 = broadcast(t3, {true, true, false});
auto t5 = add(t1, t4);
auto t6 = castOp(DataType::Half, t5);
auto t7 = castOp(DataType::Half, t3);
fusion->addOutput(t6);
fusion->addOutput(t7);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_outer2(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t0 = at::randn(input_shape, fp16_options);
auto t2 = at::randn({input_shape[2]}, fp32_options);
std::vector<c10::IValue> aten_inputs({t0, t2});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// full tensor - halfx2 - t0, t6
// inner dimension only - halfx2 - t2, t7
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * t0.numel() * (2 + 2) +
input_shape[2] * (2 + 4));
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_outer2,
setup_vit_base_patch16_224_bcast_outer2,
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_outer2,
nullptr);
NVFUSER_BENCHMARK_RUN(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_outer2)
->Args({64, 197, 2304})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void setup_vit_base_patch16_224_norm_inner3(Fusion* fusion, void* null) {
FusionGuard fg(fusion);
auto t0 = makeContigTensor(4, DataType::Half);
fusion->addInput(t0);
auto d13 = IrBuilder::create<Double>();
fusion->addInput(d13);
auto t1 = castOp(DataType::Float, t0);
auto t2 = set(t1);
auto t3 = mul(t2, d13);
auto t4 = set(t3);
auto t5 = max(t4, {3});
auto t6 = broadcast(t5, {false, false, false, true});
auto t7 = sub(t4, t6);
auto t8 = exp(t7);
auto t9 = sum(t8, {3});
auto t10 = broadcast(t9, {false, false, false, true});
auto t11 = reciprocal(t10);
auto t12 = mul(t8, t11);
auto t13 = randlike(t12);
auto d79 = sub(IrBuilder::create<Double>(1), IrBuilder::create<Double>(0));
auto t14 = lt(t13, d79);
auto t15 = castOp(DataType::Float, t14);
auto b81 = eq(d79, IrBuilder::create<Double>(0));
auto d82 = castOp(DataType::Double, b81);
auto d83 = add(d82, d79);
auto d85 = div(IrBuilder::create<Double>(1), d83);
auto t16 = mul(t12, t15);
auto t17 = mul(t16, d85);
auto t18 = set(t17);
auto t19 = castOp(DataType::Half, t18);
fusion->addOutput(t19);
fusion->addOutput(t14);
fusion->addOutput(t12);
fusion->addOutput(t4);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_norm_inner3(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t0 = at::randn(input_shape, fp16_options);
std::vector<c10::IValue> aten_inputs({t0, 0.125});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// Full tensors - floatx2, half x2, bool - t12, t4, t0, t19, t14
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * t0.numel() * 13);
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_norm_inner3,
setup_vit_base_patch16_224_norm_inner3,
NvFuserScheduler_TIMM_vit_base_patch16_224_norm_inner3,
nullptr);
// Norm inner dim
NVFUSER_BENCHMARK_RUN(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_norm_inner3)
->Args({64, 12, 197})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void setup_vit_base_patch16_224_bcast_outer6(
Fusion* fusion,
void* null) {
FusionGuard fg(fusion);
auto t0 = makeContigTensor(3, DataType::Half);
auto t2 = makeContigTensor(1, DataType::Float);
fusion->addInput(t0);
fusion->addInput(t2);
auto t1 = castOp(DataType::Float, t0);
auto t3 = set(t2);
auto t4 = broadcast(t3, {true, true, false});
auto t5 = add(t1, t4);
auto t6 = set(t5);
auto t7 = mul(t6, IrBuilder::create<Double>(0.707106));
auto t8 = erf(t7);
auto t9 = add(IrBuilder::create<Double>(1), t8);
auto t10 = mul(IrBuilder::create<Double>(0.5), t9);
auto t11 = mul(t6, t10);
auto t12 = randlike(t11);
auto d66 = sub(IrBuilder::create<Double>(1), IrBuilder::create<Double>(0));
auto t13 = lt(t12, d66);
auto t14 = castOp(DataType::Float, t13);
auto t15 = mul(t11, t14);
auto b68 = eq(d66, IrBuilder::create<Double>(0));
auto d69 = castOp(DataType::Double, b68);
auto d70 = add(d69, d66);
auto d72 = div(IrBuilder::create<Double>(1), d70);
auto t16 = mul(t15, d72);
auto t17 = set(t16);
auto t18 = castOp(DataType::Half, t17);
auto t19 = castOp(DataType::Half, t3);
fusion->addOutput(t18);
fusion->addOutput(t13);
fusion->addOutput(t6);
fusion->addOutput(t19);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_outer6(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t0 = at::randn(input_shape, fp16_options);
auto t2 = at::randn({input_shape[2]}, fp32_options);
std::vector<c10::IValue> aten_inputs({t0, t2});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// full tensors - float, halfx2, bool - t6, t0, t18, t13
// inner dimension only - float, half - t2, t19
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * t0.numel() * (2 + 2 + 1 + 4) +
input_shape[2] * (4 + 2));
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_outer6,
setup_vit_base_patch16_224_bcast_outer6,
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_outer6,
nullptr);
NVFUSER_BENCHMARK_RUN(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_outer6)
// First size is original, the rest are variations to check perf
// reliability.
->Args({64, 197, 3 * 1024})
->Args({64, 197, 2 * 1024})
->Args({64, 197, 1024})
->Args({64, 197, 512})
->Args({3, 1024, 64 * 197})
->Args({2, 1024, 64 * 197})
->Args({1, 1024, 64 * 197})
->Args({2, 256, 64 * 197})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
// Reverse the broadcast dimensions to check for consistency in scheduling.
static void setup_vit_base_patch16_224_bcast_inner6(
Fusion* fusion,
void* null) {
FusionGuard fg(fusion);
auto t0 = makeContigTensor(3, DataType::Half);
auto t2 = makeContigTensor(2, DataType::Float);
fusion->addInput(t0);
fusion->addInput(t2);
auto t1 = castOp(DataType::Float, t0);
auto t3 = set(t2);
auto t4 = broadcast(t3, {false, false, true});
auto t5 = add(t1, t4);
auto t6 = set(t5);
auto t7 = mul(t6, IrBuilder::create<Double>(0.707106));
auto t8 = erf(t7);
auto t9 = add(IrBuilder::create<Double>(1), t8);
auto t10 = mul(IrBuilder::create<Double>(0.5), t9);
auto t11 = mul(t6, t10);
auto t12 = randlike(t11);
auto d66 = sub(IrBuilder::create<Double>(1), IrBuilder::create<Double>(0));
auto t13 = lt(t12, d66);
auto t14 = castOp(DataType::Float, t13);
auto t15 = mul(t11, t14);
auto b68 = eq(d66, IrBuilder::create<Double>(0));
auto d69 = castOp(DataType::Double, b68);
auto d70 = add(d69, d66);
auto d72 = div(IrBuilder::create<Double>(1), d70);
auto t16 = mul(t15, d72);
auto t17 = set(t16);
auto t18 = castOp(DataType::Half, t17);
auto t19 = castOp(DataType::Half, t3);
fusion->addOutput(t18);
fusion->addOutput(t13);
fusion->addOutput(t6);
fusion->addOutput(t19);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_inner6(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t0 = at::randn(input_shape, fp16_options);
auto t2 = at::randn({input_shape[0], input_shape[1]}, fp32_options);
std::vector<c10::IValue> aten_inputs({t0, t2});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// full tensors - float, halfx2, bool - t6, t0, t18, t13
// outer two dimensions only - float, half - t2, t19
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * t0.numel() * (2 + 2 + 1 + 4) +
input_shape[0] * input_shape[1] * (4 + 2));
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_inner6,
setup_vit_base_patch16_224_bcast_inner6,
NvFuserScheduler_TIMM_vit_base_patch16_224_bcast_inner6,
nullptr);
NVFUSER_BENCHMARK_RUN(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_bcast_inner6)
->Args({64, 197, 3 * 1024})
->Args({64, 197, 2 * 1024})
->Args({64, 197, 1024})
->Args({64, 197, 512})
->Args({3, 1024, 64 * 197})
->Args({2, 1024, 64 * 197})
->Args({1, 1024, 64 * 197})
->Args({2, 256, 64 * 197})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void setup_vit_base_patch16_224_LN_BWD(Fusion* fusion, void* null) {
FusionGuard fg(fusion);
auto t0 = makeContigTensor(3, DataType::Bool);
fusion->addInput(t0);
auto t1 = makeContigTensor(3, DataType::Half);
fusion->addInput(t1);
auto t2 = castOp(DataType::Float, t1);
auto t3 = makeContigTensor(3, DataType::Half);
fusion->addInput(t3);
auto t4 = castOp(DataType::Float, t3);
auto d35 = t3->axis(2)->extent();
auto t5 = TensorViewBuilder()
.shape({-1, -1, 1})
.dtype(DataType::Float)
.contiguity({true, true, false})
.build();
fusion->addInput(t5);
auto t6 = TensorViewBuilder()
.shape({-1, -1, 1})
.dtype(DataType::Float)
.contiguity({true, true, false})
.build();
fusion->addInput(t6);
auto t7 = makeContigTensor(1, DataType::Half);
fusion->addInput(t7);
auto t8 = castOp(DataType::Float, t7);
auto t9 = makeContigTensor(1, DataType::Half);
fusion->addInput(t9);
auto t11 = sub(t4, t5);
auto t12 = mul(t11, t6);
auto t13 = broadcast(t8, {true, true, false});
auto t14 = mul(t2, t13);
auto t15 = mul(d35, t14);
auto t16 = sum(t14, {2});
auto t17 = broadcast(t16, {false, false, true});
auto t18 = mul(t14, t12);
auto t19 = sum(t18, {2});
auto t20 = broadcast(t19, {false, false, true});
auto t40 = castOp(DataType::Half, t12);
auto t41 = castOp(DataType::Float, t40);
auto t42 = castOp(DataType::Half, t20);
auto t43 = castOp(DataType::Float, t42);
auto t21 = mul(t42, t43);
auto t38 = castOp(DataType::Half, t15);
auto t39 = castOp(DataType::Float, t38);
auto t44 = castOp(DataType::Half, t17);
auto t45 = castOp(DataType::Float, t44);
auto t22 = sub(t39, t45);
auto t23 = sub(t22, t21);
auto d87 = reciprocal(d35);
auto t24 = mul(d87, t6);
auto t25 = mul(t24, t23);
auto t26 = mul(t2, t41);
auto t27 = sum(t26, {0, 1});
auto t28 = sum(t2, {0, 1});
auto t29 = castOp(DataType::Float, t0);
auto t30 = mul(t25, t29);
auto d33 = IrBuilder::create<Double>();
fusion->addInput(d33);
auto t31 = mul(t30, d33);
auto t32 = sum(t31, {0, 1});
auto t33 = castOp(DataType::Half, t32);
auto t34 = castOp(DataType::Half, t31);
auto t35 = castOp(DataType::Half, t25);
auto t36 = castOp(DataType::Half, t27);
auto t37 = castOp(DataType::Half, t28);
fusion->addOutput(t33);
fusion->addOutput(t34);
fusion->addOutput(t35);
fusion->addOutput(t36);
fusion->addOutput(t37);
}
static void NvFuserScheduler_TIMM_vit_base_patch16_224_LN_BWD(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};
at::manual_seed(0);
// auto bool_options = at::TensorOptions().dtype(at::kBool).device(at::kCUDA,
// 0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
auto t0 = at::randn(input_shape, fp16_options).to(at::kBool);
auto t1 = at::randn(input_shape, fp16_options);
auto t3 = at::randn(input_shape, fp16_options);
auto t5 = at::randn({input_shape[0], input_shape[1], 1}, fp32_options);
auto t6 = at::randn({input_shape[0], input_shape[1], 1}, fp32_options);
auto t7 = at::randn({input_shape[2]}, fp16_options);
auto t9 = at::randn({input_shape[2]}, fp16_options);
std::vector<c10::IValue> aten_inputs({t0, t1, t3, t5, t6, t7, t9, 1.0});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// Full tensors - bool, halfx4 - t0, t1, t3, t34, t35
// Outer two dimensions - floatx2 - t5, t6
// Inner dimension - halfx5 - t7, t9, t33, t36, t37
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * ((t0.numel() * (4 * 2 + 1))) +
(t5.numel() * 4 * 2) + (t7.numel() * 5 * 2));
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_LN_BWD,
setup_vit_base_patch16_224_LN_BWD,
NvFuserScheduler_TIMM_vit_base_patch16_224_LN_BWD,
nullptr);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_NCHW_vit_base_patch16_224_LN_BWD)
->Args({128, 197, 768})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
static void nhwc_seresnet152d_transpose65(Fusion* fusion, void* null) {
FusionGuard fg(fusion);
auto t2 = makeContigTensor(4, DataType::Half);
auto t5 = makeContigTensor(4, DataType::Half);
auto t7 = makeContigTensor(4, DataType::Half);
auto t9 = makeContigTensor(4, DataType::Half);
auto t4 = makeConcreteTensor({}, DataType::Half);
fusion->addInput(t2);
fusion->addInput(t5);
fusion->addInput(t7);
fusion->addInput(t9);
fusion->addInput(t4);
auto d86 = IrBuilder::create<Double>(0);
auto t3 = castOp(DataType::Float, t2);
auto t6 = castOp(DataType::Float, t5);
auto t8 = castOp(DataType::Float, t7);
auto t10 = castOp(DataType::Float, t9);
auto t11 = add(t8, t10);
auto t12 = set(t11);
auto t13 = set(t6);
auto t14 = lt(t13, d86);
auto t15 = broadcast(t4, {true, true, true, true});
auto t16 = where(t14, t15, t12);
auto t17 = set(t16);
auto t29 = castOp(DataType::Half, t17);
auto t18 = mul(t17, t3);
auto t19 = permute(t18, {0, 2, 3, 1});
auto t30 = castOp(DataType::Half, t19);
fusion->addOutput(t29);
fusion->addOutput(t30);
}
static void NvFuserScheduler_nhwc_seresnet152d_transpose65(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
void* null) {
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(2),
benchmark_state.range(2),
benchmark_state.range(1)};
at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto t2 = at::randn(input_shape, fp16_options);
auto t5 = at::randn(input_shape, fp16_options);
auto t7 = at::randn(input_shape, fp16_options);
auto t9 = at::randn(input_shape, fp16_options);
// Need zero dim tensor don't know how to do that, so just going to reduce a
// 1D tensor
auto t4 = at::randn({2}, fp16_options).sum();
std::vector<c10::IValue> aten_inputs({t2, t5, t7, t9, t4});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
// Full tensors - halfx6 - t2, t5, t7, t9, t29, t30
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) * t2.numel() * 6 * 2);
}
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_TIMM_nhwc_seresnet152d_transpose65,
nhwc_seresnet152d_transpose65,
NvFuserScheduler_nhwc_seresnet152d_transpose65,
nullptr);
// Norm inner dim Half version of vit_base_patch16_224_norm_inner3
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_TIMM_nhwc_seresnet152d_transpose65)
->Args({128, 12, 197})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
|