File: utils.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (228 lines) | stat: -rw-r--r-- 7,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#include <benchmarks/cpp/nvfuser/utils.h>

#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>

#include <sstream>

using namespace torch::jit::fuser::cuda;

std::string toString(const ReductionParams& rparams) {
  std::stringstream ss;
  ss << (rparams.fastest_dim ? "Red On Fastest Dim // " : "Red On Slow Dim // ")
     << (rparams.persistent_kernel ? "Persistent Kernel // " : "")
     << (rparams.project_persistent_buffers ? "Project Persistent Buffers // "
                                            : "");

  if (rparams.schedule_3D) {
    ss << "3D Schedule // "
       << "Outer Reduction: "
       << (rparams.cross_block_outer_reduction ? "cross block / " : "")
       << (rparams.cross_grid_outer_reduction ? "cross grid / " : "")
       << (rparams.split_grid_dim_outer_reduction ? "split grid dim / " : "");
    if (rparams.batches_per_block_outer_reduction > 1 ||
        rparams.persistent_kernel) {
      ss << "persistent batch - " << rparams.batches_per_block_outer_reduction
         << " / ";
    }
  }

  ss << " // Iteration Domain: "
     << (rparams.multiple_reds_per_blk ? "multiple reductions per block / "
                                       : "")
     << (rparams.split_grid_dim_iter_dom ? "split grid dimension / " : "")
     << (rparams.vectorize_iter_dom ? "vectorize / " : "")
     << (rparams.unroll_factor_iter_dom > 1 && !rparams.vectorize_iter_dom
             ? "unroll / "
             : "");
  if (rparams.unroll_factor_iter_dom > 1 || rparams.vectorize_iter_dom) {
    ss << "factor " << rparams.unroll_factor_iter_dom;
  }

  ss << " // Inner Reduction Domain: "
     << (rparams.cross_block_inner_reduction ? "cross block reduction / " : "")
     << (rparams.pad_inner_reduction_to_warp ? "pad to warp / " : "")
     << (rparams.cross_grid_inner_reduction ? "cross grid reduction / " : "");

  if (rparams.batches_per_block_inner_reduction > 1 ||
      rparams.persistent_kernel) {
    ss << "persistent batch - " << rparams.batches_per_block_inner_reduction
       << " / ";
  }

  ss << (rparams.cross_grid_inner_reduction &&
                 rparams.split_grid_dim_inner_reduction
             ? "split grid dimension / "
             : "")
     << (rparams.vectorize_inner_reduction ? "vectorize / " : "")
     << (rparams.unroll_factor_inner_reduction > 1 &&
                 !rparams.vectorize_inner_reduction
             ? "unroll / "
             : "");
  if (rparams.unroll_factor_inner_reduction > 1 ||
      rparams.vectorize_inner_reduction) {
    ss << "factor " << rparams.unroll_factor_inner_reduction;
  }
  return ss.str();
}

std::string toString(const PointwiseParams& params) {
  std::stringstream ss;
  if (params.break_point) {
    ss << "2D Schedule at " << params.break_point << "/";
    if (params.split_block) {
      ss << " Split block into y-dim/";
    }
    if (params.split_grid_y_dim) {
      ss << " Split y grid dim/";
    }
  } else {
    ss << "1D"
       << "/";
  }
  if (params.unroll_factor > 1) {
    if (params.vectorize) {
      ss << "Vectorize, Factor: " << params.unroll_factor;
    } else {
      ss << "Unroll, Factor: " << params.unroll_factor;
    }
  }
  return ss.str();
}

std::string toString(const TransposeParams& params) {
  std::stringstream ss;
  ss << "Tile size: (" << params.tile_size1 << "," << params.tile_size2
     << ")/";
  ss << "Vectorize size: (" << params.vectorize_factor1 << ","
     << params.vectorize_factor2 << ")";
  return ss.str();
}

std::string toString(const std::shared_ptr<HeuristicParams>& params) {
  auto rparams = std::dynamic_pointer_cast<ReductionParams>(params);
  if (rparams) {
    return toString(*rparams);
  }
  auto pparams = std::dynamic_pointer_cast<PointwiseParams>(params);
  if (pparams) {
    return toString(*pparams);
  }
  auto tparams = std::dynamic_pointer_cast<TransposeParams>(params);
  if (tparams) {
    return toString(*tparams);
  }
  TORCH_INTERNAL_ASSERT(
      false,
      "Unknown heuristic parameter type. Did you just added a new heuristic parameter type but forget to update here?");
}

std::string toString(LaunchParams lparams) {
  std::stringstream ss;
  lparams.toString();
  ss << "/Launch_Parameters["
     << "block(" << lparams.bdimz() << "/" << lparams.bdimy() << "/"
     << lparams.bdimx() << ")/grid(" << lparams.gdimz() << "/"
     << lparams.gdimy() << "/" << lparams.gdimx() << ")/" << lparams.smem()
     << "]";
  return ss.str();
}

void clearL2Cache() {
  torch::NoGradGuard no_grad;
  auto l2_cache_size = at::cuda::getCurrentDeviceProperties()->l2CacheSize;
  auto options =
      torch::TensorOptions().dtype(torch::kFloat32).device(at::kCUDA, 0);

  auto l2_elems = l2_cache_size / 4;
  torch::Tensor t0 = torch::empty(l2_elems, options);
  torch::Tensor t1 = torch::clone(t0);
};

TensorView* makeSymbolicTensor(size_t ndims, DataType dtype) {
  return TensorViewBuilder().ndims(ndims).dtype(dtype).build();
}

TensorView* makeContigTensor(size_t ndims, DataType dtype) {
  return TensorViewBuilder()
      .ndims(ndims)
      .dtype(dtype)
      .contiguity(std::vector<bool>(ndims, true))
      .build();
}

TensorView* makeConcreteTensor(std::vector<int64_t> shape, DataType dtype) {
  return TensorViewBuilder().shape(shape).dtype(dtype).build();
}

TensorView* makeContigConcreteTensor(
    std::vector<int64_t> shape,
    DataType dtype) {
  return TensorViewBuilder()
      .shape(shape)
      .dtype(dtype)
      .contiguity(std::vector<bool>(shape.size(), true))
      .build();
}

void runBenchmarkIterations(
    benchmark::State& benchmark_state,
    FusionExecutorCache* fusion_executor_cache,
    std::vector<c10::IValue>& aten_inputs) {
  fusion_executor_cache->runFusionWithInputs(aten_inputs);
  bool segmented =
      fusion_executor_cache->getMostRecentKernelRuntime()->isSegmented() &&
      fusion_executor_cache->getMostRecentKernelRuntime()
              ->fusionSegments()
              ->groups()
              .size() > 1;

  if (!segmented) {
    fusion_executor_cache->profile(true);
    fusion_executor_cache->runFusionWithInputs(aten_inputs);
    auto compile_log = fusion_executor_cache->getMostRecentExecutorInfo();
    auto executor_instance = compile_log.fusion_executor;

    auto params = toString(compile_log.params);
    auto lparams = toString(compile_log.fusion_executor->lastLaunchParams());
    benchmark_state.SetLabel(params + lparams);

    executor_instance->setMeasureKernelTimeFlag(true);

    // Sync everything up before we start
    C10_CUDA_CHECK(cudaDeviceSynchronize());
    for (auto _ : benchmark_state) {
      clearL2Cache();
      auto cg_outputs = fusion_executor_cache->runFusionWithInputs(aten_inputs);
      benchmark_state.SetIterationTime(
          executor_instance->kernelTimeMs() / 1000.0);
    }
    // Sync everything up before we're finished, don't want to run ahead on the
    // cpu while benchmarking.
    C10_CUDA_CHECK(cudaDeviceSynchronize());
  } else {
    // Segmented
    // Sync everything up before we start
    {
      // Compile/warmup
      auto cg_outputs = fusion_executor_cache->runFusionWithInputs(aten_inputs);
    }
    C10_CUDA_CHECK(cudaDeviceSynchronize());
    CudaKernelTimer timer;
    for (auto _ : benchmark_state) {
      clearL2Cache();
      timer.restart();
      auto cg_outputs = fusion_executor_cache->runFusionWithInputs(aten_inputs);
      benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
    }
    // Sync everything up before we're finished, don't want to run ahead on the
    // cpu while benchmarking.
    C10_CUDA_CHECK(cudaDeviceSynchronize());
  }
}

namespace executorCache {
thread_local ExecutorMap executor_map_;
ExecutorMap& getGlobalMap() {
  return executor_map_;
}
} // namespace executorCache