1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#include <benchmark/benchmark.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
using namespace torch::jit::tensorexpr;
namespace {
class SignedLog1pBench : public benchmark::Fixture {
public:
void SetUp(const benchmark::State& state) override {
input_size_ = {state.range(0), state.range(1)};
input_size_int_ = {state.range(0), state.range(1)};
input_ = torch::rand(input_size_);
ref_ = signedLog1p(input_);
}
void TearDown(benchmark::State& state) override {
TORCH_CHECK(at::allclose(ref_, output_, 1e-3, 1e-3));
state.counters["GB/s"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * output_.nbytes(),
benchmark::Counter::kIsRate);
}
at::Tensor signedLog1p(const at::Tensor& inp) {
auto sign = at::sign(inp);
auto log1p = at::log1p(at::abs(inp));
return sign * log1p;
}
void runATen(benchmark::State& state) {
for (auto _ : state) {
output_ = signedLog1p(input_);
}
}
void runNNC(benchmark::State& state) {
BufHandle input_ph(
"input", {input_size_int_[0], input_size_int_[1]}, kFloat);
Tensor abs_result = Compute(
"aten_abs",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return abs(input_ph.load(m, n));
});
Tensor log1p_result = Compute(
"aten_log1p",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return log1p(abs_result.load(m, n));
});
Tensor sign_result =
computeSign({input_ph}, {input_size_int_[0], input_size_int_[1]});
Tensor output = Compute(
"aten_mul",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return sign_result.load(m, n) * log1p_result.load(m, n);
});
LoopNest nest({output}, {abs_result, log1p_result, sign_result, output});
GRAPH_DEBUG("Original Stmt: ", *nest.root_stmt());
nest.inlineIntermediateBufs(true);
nest.prepareForCodegen();
nest.simplify();
nest.vectorizeInnerLoops();
nest.simplify();
GRAPH_DEBUG("Final stmt: ", *nest.root_stmt());
// StmtPtr s = IRSimplifier::simplify(nest.root_stmt());
std::vector<CodeGen::BufferArg> buf_args;
buf_args.emplace_back(input_ph);
buf_args.emplace_back(output);
LLVMCodeGen cg(nest.root_stmt(), buf_args);
std::vector<CodeGen::CallArg> call_args;
for (auto _ : state) {
output_ = at::empty_like(ref_);
call_args.clear();
call_args.emplace_back(input_.data_ptr<float>());
call_args.emplace_back(output_.data_ptr<float>());
cg.call(call_args);
}
}
void runNNCLogVml(benchmark::State& state) {
BufHandle input_ph(
"input", {input_size_int_[0], input_size_int_[1]}, kFloat);
Tensor abs_result = Compute(
"aten_abs",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return abs(input_ph.load(m, n));
});
Tensor log_vml_result = Compute(
"aten_log1p",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return log_vml(abs_result.load(m, n) + ExprHandle(1));
});
Tensor sign_result =
computeSign({input_ph}, {input_size_int_[0], input_size_int_[1]});
Tensor output = Compute(
"aten_mul",
{input_size_int_[0], input_size_int_[1]},
[&](const VarHandle& m, const VarHandle& n) {
return sign_result.load(m, n) * log_vml_result.load(m, n);
});
LoopNest nest({output}, {abs_result, log_vml_result, sign_result, output});
GRAPH_DEBUG("Original Stmt: ", *nest.root_stmt());
nest.inlineIntermediateBufs(true);
nest.prepareForCodegen();
nest.simplify();
nest.vectorizeInnerLoops();
nest.simplify();
GRAPH_DEBUG("Final stmt: ", *nest.root_stmt());
// StmtPtr s = IRSimplifier::simplify(nest.root_stmt());
std::vector<CodeGen::BufferArg> buf_args;
buf_args.emplace_back(input_ph);
buf_args.emplace_back(output);
LLVMCodeGen cg(nest.root_stmt(), buf_args);
std::vector<CodeGen::CallArg> call_args;
for (auto _ : state) {
output_ = at::empty_like(ref_);
call_args.clear();
call_args.emplace_back(input_.data_ptr<float>());
call_args.emplace_back(output_.data_ptr<float>());
cg.call(call_args);
}
}
private:
std::vector<long> input_size_;
std::vector<int> input_size_int_;
at::Tensor input_;
at::Tensor output_;
at::Tensor ref_;
};
} // namespace
BENCHMARK_DEFINE_F(SignedLog1pBench, ATen)(benchmark::State& state) {
runATen(state);
}
BENCHMARK_DEFINE_F(SignedLog1pBench, NNC)(benchmark::State& state) {
runNNC(state);
}
BENCHMARK_DEFINE_F(SignedLog1pBench, NNCLogVml)(benchmark::State& state) {
runNNCLogVml(state);
}
BENCHMARK_REGISTER_F(SignedLog1pBench, ATen)->Args({10, 1467});
BENCHMARK_REGISTER_F(SignedLog1pBench, NNC)->Args({10, 1467});
BENCHMARK_REGISTER_F(SignedLog1pBench, NNCLogVml)->Args({10, 1467});
|