File: launcher.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (588 lines) | stat: -rw-r--r-- 17,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import argparse
import json
import os
from pathlib import Path

from data import data_map
from metrics.ProcessedMetricsPrinter import ProcessedMetricsPrinter
from models import model_map
from server import server_map
from trainer import (
    criterion_map,
    ddp_hook_map,
    ddp_model_map,
    hook_state_map,
    iteration_step_map,
    preprocess_data_map,
    trainer_map,
)

import torch
import torch.distributed as c10d
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
from torch.distributed.rpc import TensorPipeRpcBackendOptions
from torch.futures import wait_all
from torch.utils.data import DataLoader


def get_name(rank, args):
    r"""
    A function that gets the name for the rank
    argument
    Args:
        rank (int): process number in the world
        args (parser): benchmark configurations
    """
    t_count = args.ntrainer + args.ncudatrainer
    s_count = args.nserver + args.ncudaserver
    if rank < t_count:
        return f"trainer{rank}"
    elif rank < (t_count + s_count):
        return f"server{rank}"
    else:
        return "master"


def get_server_rank(args, rank):
    r"""
    A function that gets the server rank for
    the rank argument.
    Args:
        args (parser): benchmark configurations
        rank (int): trainer rank
    """
    s_offset = args.ntrainer + args.ncudatrainer
    tps = args.ntrainer // args.nserver
    return rank // tps + s_offset


def get_cuda_server_rank(args, rank):
    r"""
    A function that gets the cudaserver rank for
    the rank argument.
    Args:
        args (parser): benchmark configurations
        rank (int): trainer rank
    """
    s_offset = args.ntrainer + args.ncudatrainer + args.nserver
    t_index = rank - args.ntrainer
    ctps = args.ncudatrainer // args.ncudaserver
    return t_index // ctps + s_offset


def get_server_rref(server_rank, args, extra_args):
    r"""
    A function that creates a RRef to the server.
    Args:
        server_rank (int): process number in the world
        args (parser): benchmark configurations
        extra_args (dict): configurations added by the user
    """
    server = server_map[args.server]
    name = get_name(
        server_rank,
        args
    )
    if extra_args is not None:
        server_args = extra_args.values()
    else:
        server_args = []
    if server_rank >= args.ntrainer + args.ncudatrainer + args.nserver:
        trainer_count = args.ncudatrainer / args.ncudaserver
        use_cuda_rpc = True
    else:
        trainer_count = args.ntrainer / args.nserver
        use_cuda_rpc = False
    return rpc.remote(
        name,
        server,
        args=(
            server_rank,
            trainer_count,
            use_cuda_rpc,
            *server_args,
        ),
    )


def run_trainer(
    args, extra_args, data, rank, server_rref
):
    r"""
    A function that runs obtains a trainer instance and calls
    the train method.
    Args:
        args (parser): benchmark configurations
        extra_args (dict): configurations added by the user
        data (list): training samples
        rank (int): process number in the world
        server_rrefs (dict): a dictionary containing server RRefs
    """
    trainer_class = trainer_map[args.trainer]
    if extra_args is not None:
        trainer_args = extra_args.values()
    else:
        trainer_args = []
    trainer_count = args.ntrainer + args.ncudatrainer
    store = c10d.FileStore(args.filestore, trainer_count)
    if args.backend == "gloo":
        process_group = c10d.ProcessGroupGloo(
            store, rank, trainer_count
        )
    elif args.backend == "nccl":
        process_group = c10d.ProcessGroupNCCL(
            store, rank, trainer_count
        )
    elif args.backend == "multi":
        process_group = c10d.ProcessGroupNCCL(
            store, rank, trainer_count
        )
        if c10d.is_initialized() is False:
            c10d.init_process_group(backend="gloo", rank=rank, world_size=trainer_count)

    model = load_model(args)
    preprocess_data = preprocess_data_map[args.preprocess_data]
    create_criterion = criterion_map[args.create_criterion]
    create_ddp_model = ddp_model_map[args.create_ddp_model]
    iteration_step = iteration_step_map[args.iteration_step]
    hook_state_class = hook_state_map[args.hook_state]
    hook = ddp_hook_map[args.ddp_hook]
    # check if this a cudatrainer
    use_cuda_rpc = rank >= args.ntrainer
    trainer = trainer_class(
        process_group,
        use_cuda_rpc,
        server_rref,
        args.backend,
        args.epochs,
        preprocess_data,
        create_criterion,
        create_ddp_model,
        hook_state_class,
        hook,
        iteration_step,
        *trainer_args
    )
    trainer.train(model, data)
    metrics = trainer.get_metrics()
    return [rank, metrics]


def call_trainers(args, extra_args, train_data, server_rrefs):
    r"""
    A function that starts the trainers. Each trainer is started
    using an rpc_async request.
    Args:
        args (parser): benchmark configurations
        extra_args (dict): configurations added by the user
        train_data (list): training samples
        server_rrefs (dict): a dictionary containing server RRefs
    """
    futs = []
    for trainer_rank in range(0, args.ntrainer + args.ncudatrainer):
        trainer_name = get_name(
            trainer_rank,
            args
        )
        server_rref = None
        if server_rrefs:
            if trainer_rank >= args.ntrainer:
                server_rank = get_cuda_server_rank(args, trainer_rank)
            else:
                server_rank = get_server_rank(args, trainer_rank)
            server_rref = server_rrefs[server_rank]
        fut = rpc.rpc_async(
            trainer_name,
            run_trainer,
            args=(
                args,
                extra_args,
                train_data[trainer_rank],
                trainer_rank,
                server_rref,
            ),
            timeout=args.rpc_timeout
        )
        futs.append(fut)
    return futs


def benchmark_warmup(
    args, extra_args, data, server_rrefs
):
    r"""
    A function that runs the training algorithm. The goal of this
    function is to warm the rpc. The server states are reset.
    Args:
        args (parser): benchmark configurations
        extra_args (dict): configurations added by the user
        data (list): training samples
        server_rrefs (dict): a dictionary containing server RRefs
    """
    futs = call_trainers(args, extra_args, data, server_rrefs)
    wait_all(futs)
    for server_rref in server_rrefs.values():
        server_rref.rpc_sync().reset_state(server_rref)
    print("benchmark warmup done\n")


def split_list(arr, n):
    r"""
    A function that splits a list into n lists
    Args:
        arr (list): training samples
        n (int): number of output lists
    """
    return [arr[i::n] for i in range(n)]


def get_server_metrics(server_rrefs):
    r"""
    A function that calls the remote server to obtain metrics
    collected during the benchmark run.
    Args:
        server_rrefs (dict): a dictionary containing server RRefs
    """
    rank_metrics = []
    for rank, server_rref in server_rrefs.items():
        metrics = server_rref.rpc_sync().get_metrics(server_rref)
        rank_metrics.append([rank, metrics])
    return rank_metrics


def run_master(rank, data, args, extra_configs, rpc_backend_options):
    r"""
    A function that runs the master process in the world. This function
    obtains remote references to initialized servers, splits the data,
    runs the trainers, and prints metrics.
    Args:
        rank (int): process number in the world
        data (list): training samples
        args (parser): benchmark configurations
        extra_configs (dict): configurations added by the user
        rpc_backend_options (rpc): configurations/options for the rpc TODO: fix
    """
    world_size = args.ntrainer + args.ncudatrainer + args.nserver + args.ncudaserver + 1
    rpc.init_rpc(
        get_name(
            rank,
            args
        ),
        rank=rank,
        world_size=world_size,
        rpc_backend_options=rpc_backend_options
    )
    server_rrefs = {}
    for i in range(
        args.ntrainer + args.ncudatrainer, world_size - 1
    ):
        server_rrefs[i] = get_server_rref(i, args, extra_configs["server_config"])
    train_data = split_list(
        list(DataLoader(data, batch_size=args.batch_size)),
        args.ntrainer + args.ncudatrainer
    )

    # warmup run the benchmark
    benchmark_warmup(
        args, extra_configs["trainer_config"], train_data, server_rrefs
    )
    # run the benchmark
    trainer_futs = call_trainers(
        args, extra_configs["trainer_config"], train_data, server_rrefs
    )
    # collect metrics and print
    metrics_printer = ProcessedMetricsPrinter()
    rank_metrics_list = wait_all(trainer_futs)
    metrics_printer.print_metrics("trainer", rank_metrics_list)
    rank_metrics_list = get_server_metrics(server_rrefs)
    metrics_printer.print_metrics("server", rank_metrics_list)


def run_benchmark(rank, args, data):
    r"""
    A function that runs the benchmark.
    Args:
        rank (int): process number in the world
        args (parser): configuration args
        data (list): training samples
    """

    config = load_extra_configs(args)

    torch.manual_seed(args.torch_seed)
    torch.cuda.manual_seed_all(args.cuda_seed)
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = True

    world_size = args.ntrainer + args.ncudatrainer + args.nserver + args.ncudaserver + 1
    os.environ['MASTER_ADDR'] = args.master_addr
    os.environ['MASTER_PORT'] = args.master_port
    rpc_backend_options = TensorPipeRpcBackendOptions(rpc_timeout=args.rpc_timeout)
    if rank == world_size - 1:
        # master = [ntrainer + ncudatrainer + nserver + ncudaserver, ntrainer + ncudatrainer + nserver + ncudaserver]
        run_master(rank, data, args, config, rpc_backend_options)
    elif rank >= args.ntrainer + args.ncudatrainer:
        # parameter_servers = [ntrainer + ncudatrainer, ntrainer + ncudatrainer + nserver + ncudaserver)
        rpc.init_rpc(
            get_name(
                rank,
                args
            ),
            rank=rank,
            world_size=world_size,
            rpc_backend_options=rpc_backend_options
        )
    else:
        # trainers = [0, ntrainer + ncudatrainer)
        if rank >= args.ntrainer:
            server_rank = get_cuda_server_rank(args, rank)
            server_name = get_name(server_rank, args)
            rpc_backend_options.set_device_map(
                server_name,
                {rank: server_rank}
            )
        trainer_name = get_name(
            rank,
            args
        )
        rpc.init_rpc(
            trainer_name,
            rank=rank,
            world_size=world_size,
            rpc_backend_options=rpc_backend_options
        )
    rpc.shutdown()


def get_json_config(file_name, id):
    r"""
    A function that loads a json configuration from a file.
    Args:
        file_name (str): name of configuration file to load
        id (str): configuration that will be loaded
    """
    with open(os.path.join(Path(__file__).parent, file_name), "r") as f:
        json_config = json.load(f)[id]
    return json_config


def load_extra_configs(args):
    r"""
    A function that creates a dictionary that contains any extra configurations
    set by the user. The dictionary will contain two keys trainer_config and
    server_config, with default values None.
    Args:
        args (parser): launcher configurations
    """
    trainer_config_file = args.trainer_config_path
    server_config_file = args.server_config_path
    configurations = {
        "trainer_config": None,
        "server_config": None
    }
    if args.trainer is not None and trainer_config_file is not None:
        configurations["trainer_config"] = get_json_config(trainer_config_file, args.trainer)
    if args.server is not None and server_config_file is not None:
        configurations["server_config"] = get_json_config(server_config_file, args.server)
    return configurations


def load_data(args):
    r"""
    A function that creates an instance of the data class.
    Args:
        args (parser): launcher configurations
    """
    data_config_file = args.data_config_path
    data_config = get_json_config(data_config_file, args.data)
    data_class = data_map[data_config["data_class"]]
    return data_class(**data_config["configurations"])


def load_model(args):
    r"""
    A function that creates an instance of the model class.
    Args:
        args (parser): launcher configurations
    """
    model_config_file = args.model_config_path
    model_config = get_json_config(model_config_file, args.model)
    model_class = model_map[model_config["model_class"]]
    return model_class(**model_config["configurations"])


def main(args):
    r"""
    A function that creates multiple processes to run the benchmark.
    Args:
        args (parser): launcher configurations
    """
    # CPU and RPC trainer checks
    if args.ntrainer > 0 and args.ncudatrainer > 0:
        assert args.nserver > 0 and args.ncudaserver > 0
    if args.nserver > 0:
        assert args.ntrainer > 0
        assert args.ntrainer % args.nserver == 0
    if args.ncudaserver > 0:
        assert args.ncudatrainer > 0
        assert args.ncudatrainer % args.ncudaserver == 0

    world_size = (
        args.ntrainer + args.ncudatrainer + args.nserver + args.ncudaserver + 1
    )

    data = load_data(args)

    mp.spawn(
        run_benchmark,
        args=(
            args,
            data,
        ),
        nprocs=world_size,
        join=True
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="RPC server Benchmark")
    parser.add_argument(
        "--master_addr",
        type=str,
        help="IP address of the machine that will host the process with rank 0"
    )
    parser.add_argument(
        "--master_port",
        type=str,
        help="A free port on the machine that will host the process with rank 0"
    )
    parser.add_argument(
        "--trainer",
        type=str,
        help="trainer map key to get trainer class for benchmark run"
    )
    parser.add_argument(
        "--ntrainer",
        type=int,
        help="trainer count for benchmark run"
    )
    parser.add_argument(
        "--ncudatrainer",
        type=int,
        help="cudatrainer count for benchmark run"
    )
    parser.add_argument(
        "--filestore",
        type=str,
        help="filestore location for process group"
    )
    parser.add_argument(
        "--server",
        type=str,
        help="server map key to get trainer class for benchmark run"
    )
    parser.add_argument(
        "--nserver",
        type=int,
        help="server count for benchmark run"
    )
    parser.add_argument(
        "--ncudaserver",
        type=int,
        help="cudaserver count for benchmark run"
    )
    parser.add_argument(
        "--rpc_timeout",
        type=int,
        help="timeout in seconds to use for RPC"
    )
    parser.add_argument(
        "--backend",
        type=str,
        help="distributed communication backend to use for benchmark run"
    )
    parser.add_argument(
        "--epochs",
        type=int,
        help="epoch count for training"
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        help="number of training examples used in one iteration"
    )
    parser.add_argument(
        "--data",
        type=str,
        help="id for data configuration"
    )
    parser.add_argument(
        "--model",
        type=str,
        help="id for model configuration"
    )
    parser.add_argument(
        "--data_config_path",
        type=str,
        help="path to data configuration file"
    )
    parser.add_argument(
        "--model_config_path",
        type=str,
        help="path to model configuration file"
    )
    parser.add_argument(
        "--server_config_path",
        type=str,
        help="path to server configuration file"
    )
    parser.add_argument(
        "--trainer_config_path",
        type=str,
        help="path to trainer configuration file"
    )
    parser.add_argument(
        "--torch_seed",
        type=int,
        help="seed for generating random numbers to a non-deterministic random number"
    )
    parser.add_argument(
        "--cuda_seed",
        type=int,
        help="seed for generating random numbers to a random number for the current GPU"
    )
    parser.add_argument(
        "--preprocess_data",
        type=str,
        help="this function will be used to preprocess data before training"
    )
    parser.add_argument(
        "--create_criterion",
        type=str,
        help="this function will be used to create the criterion used for model loss calculation"
    )
    parser.add_argument(
        "--create_ddp_model",
        type=str,
        help="this function will be used to create the ddp model used during training"
    )
    parser.add_argument(
        "--hook_state",
        type=str,
        help="this will be the state class used when registering the ddp communication hook"
    )
    parser.add_argument(
        "--ddp_hook",
        type=str,
        default="allreduce_hook",
        help="ddp communication hook"
    )
    parser.add_argument(
        "--iteration_step",
        type=str,
        help="this will be the function called for each iteration of training"
    )
    args = parser.parse_args()
    print(f"{args}\n")
    main(args)