File: DummyModel.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (33 lines) | stat: -rw-r--r-- 1,208 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch.nn as nn
import torch.nn.functional as F


class DummyModel(nn.Module):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        dense_input_size: int,
        dense_output_size: int,
        dense_layers_count: int,
        sparse: bool
    ):
        r"""
        A dummy model with an EmbeddingBag Layer and Dense Layer.
        Args:
            num_embeddings (int): size of the dictionary of embeddings
            embedding_dim (int): the size of each embedding vector
            dense_input_size (int): size of each input sample
            dense_output_size (int):  size of each output sample
            dense_layers_count: (int): number of dense layers in dense Sequential module
            sparse (bool): if True, gradient w.r.t. weight matrix will be a sparse tensor
        """
        super().__init__()
        self.embedding = nn.EmbeddingBag(
            num_embeddings, embedding_dim, sparse=sparse
        )
        self.dense = nn.Sequential(*[nn.Linear(dense_input_size, dense_output_size) for _ in range(dense_layers_count)])

    def forward(self, x):
        x = self.embedding(x)
        return F.softmax(self.dense(x), dim=1)