File: server.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (363 lines) | stat: -rw-r--r-- 12,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import functools
import threading
import time
from abc import ABC, abstractmethod

from metrics.MetricsLogger import MetricsLogger
from utils import sparse_rpc_format_to_tensor, sparse_tensor_to_rpc_format

import torch
import torch.distributed.rpc as rpc


class ParameterServerBase(ABC):

    PARAMETER_SERVER_BATCH_METRIC = "parameter_server_batch_metric"
    PARAMETER_SERVER_STRAGGLER_METRIC = "parameter_server_straggler_metric"
    PARAM_INDEX_STRAGGLER = "param_index_straggler"
    PARAM_INDEX_BATCH = "param_index_batch"

    def __init__(self, rank):
        r"""
        Inits ParameterServerBase class.
        Args:
            rank (int): worker rank
        """
        self.__metrics_logger = MetricsLogger(rank)

    @abstractmethod
    def process_gradient(self):
        r"""
        A method to be implemented by child class that will process a
        gradient received by a server.
        """
        return

    @staticmethod
    @abstractmethod
    def average_gradient():
        r"""
        A method to be implemented by child class that will average
        gradients.
        """
        return

    @staticmethod
    @abstractmethod
    def reset_state():
        r"""
        A method to be implemented by child class that will reset
        the server state.
        """
        return

    def record_start(self, type, key, name, cuda=True):
        r"""
        A method that records the start event for a metric.
        Args:
            type (str): group id for metric
            key (str): unique id for metric within a group
            name (str): description of the metric
            cuda (bool): indicator to determine if this is a CUDA metric
        """
        self.__metrics_logger.record_start(
            type,
            key,
            name,
            cuda
        )

    def record_end(self, type, key):
        r"""
        A method that records the end event for a metric
        Args:
            type (str): group id for metric
            key (str): unique id for metric within a group
        """
        self.__metrics_logger.record_end(
            type,
            key
        )

    def record_straggler_start(self, key, cuda=True):
        r"""
        A helper method that records a straggler metric
        for the given key. A user should call this when
        the first gradient for the param location is received.
        Args:
            key (str): unique id for metric within a group
            cuda (bool): indicator to determine if this is a CUDA metric
        """
        self.__metrics_logger.record_start(
            self.PARAMETER_SERVER_STRAGGLER_METRIC,
            key,
            self.PARAM_INDEX_STRAGGLER,
            cuda
        )

    def record_straggler_end(self, key):
        r"""
        A helper method that records a straggler metric
        for the given key. A user should call this when
        the last gradient for the param location is received.
        Args:
            key (str): unique id for metric within a group
        """
        self.__metrics_logger.record_end(
            self.PARAMETER_SERVER_STRAGGLER_METRIC,
            key
        )

    def record_batch_start(self, key, cuda=True):
        r"""
        A helper method that records a batch metric
        for the given key. A user should call this when
        the first gradient for the param location is received.
        Args:
            key (str): unique id for metric within a group
            cuda (bool): indicator to determine if this is a CUDA metric
        """
        self.__metrics_logger.record_start(
            self.PARAMETER_SERVER_BATCH_METRIC,
            key,
            self.PARAM_INDEX_BATCH,
            cuda
        )

    def record_batch_end(self, key):
        r"""
        A helper method that records a batch metric
        for the given key. A user should call this when
        all futures for a param location have had their
        result set.
        Args:
            key (str): unique id for metric within a group
        """
        self.__metrics_logger.record_end(
            self.PARAMETER_SERVER_BATCH_METRIC,
            key
        )

    @staticmethod
    def record_method(name, type="method_metric", cuda=True):
        r"""
        A decorator that records a metric for the decorated method.
        Args:
            name (str): description of the metric
            type (str): group id for metric
            cuda (bool): indicator to determine if this is a CUDA metric
        """
        def decorator(function):
            @functools.wraps(function)
            def wrapper(self, *args):
                key = time.time()
                self.__metrics_logger.record_start(type, key, name, cuda)
                result = function(self, *args)
                self.__metrics_logger.record_end(type, key)
                return result
            return wrapper
        return decorator

    @staticmethod
    def get_metrics(server_rref):
        r"""
        A staticmethod that returns metrics captured by the __metrics_logger.
        Args:
            server_rref (RRef): remote reference to the server
        """
        self = server_rref.local_value()
        return self.__metrics_logger.get_processed_metrics()

    def clear_metrics(self):
        r"""
        A method that clears __metrics_logger recorded metrics.
        """
        return self.__metrics_logger.clear_metrics()


class AverageParameterServer(ParameterServerBase):

    def __init__(
        self,
        rank,
        trainer_count,
        use_cuda_rpc
    ):
        r"""
        A parameter server that averages the gradients
        from trainers for each training iteration step.
        Gradients are added as they are received from trainers.
        When all gradients have been received, the sum is
        divided by the number of trainers.
        Args:
            rank (int): worker rank
            trainer_count (int): count of trainers sending
                gradients to the server
            use_cuda_rpc (bool): indicator for CUDA RPC
        """
        super().__init__(rank)

        self.lock = threading.Lock()
        self.rank = rank
        self.trainer_count = trainer_count
        self.use_cuda_rpc = use_cuda_rpc

        self.batch_number = 0
        self.futures = {}
        self.gradient_dict = {}

    @staticmethod
    def reset_state(server_rref):
        r"""
        A method that clears the state of the server.
        Args:
            server_rref (RRef): remote reference to the server
        """
        self = server_rref.local_value()
        self.batch_number = 0
        self.futures.clear()
        self.gradient_dict.clear()
        self.clear_metrics()

    def param_key(self, param_loc):
        r"""
        A method that returns an encoded key that represents
        the current batch and param location.
        Args:
            param_loc (int): bucket location sent by the trainer
                containing the gradient
        """
        return f"{self.batch_number},{param_loc}"

    def clear_batch_state(self):
        r"""
        Clears the current server batch state.
        """
        self.futures.clear()
        self.gradient_dict.clear()

    def process_gradient(self, gradient, param_loc):
        r"""
        Stores the gradient if param_loc is not in gradient_dict.
        Adds the gradient to param_loc if it is in gradient_dict.
        Args:
            gradient (torch.Tensor): tensor sent from trainer
            param_loc (int): bucket location sent by the trainer
                containing the gradient
        """
        if param_loc not in self.gradient_dict:
            self.record_straggler_start(self.param_key(param_loc))
            self.record_batch_start(self.param_key(param_loc))
            self.gradient_dict[param_loc] = gradient
        else:
            self.gradient_dict[param_loc] += gradient

    @ParameterServerBase.record_method(name="average computation")
    def average(self, param_loc):
        r"""
        Obtains the tensor at the param_loc in the gradient_dict
        and then divides by number of trainers.
        Args:
            param_loc (int): bucket location sent by the trainer
                containing the gradient
        """
        param_loc_avg = self.gradient_dict[param_loc]
        param_loc_avg / (1.0 * self.trainer_count)
        return param_loc_avg

    @staticmethod
    @rpc.functions.async_execution
    def average_gradient(
        server_rref,
        received_batch_number,
        param_loc,
        gradient
    ):
        r"""
        An asynchronous function that will average gradients
        sent from trainers.
        Args:
            server_rref (RRef): remote reference to the server
            received_batch_number (int): batch number sent by
                the trainer
            param_loc (int): bucket location sent by the trainer
                containing the gradient
            gradient (torch.Tensor or list): tensor sent by the trainer
        """
        self = server_rref.local_value()
        if type(gradient) is list:
            gradient = sparse_rpc_format_to_tensor(gradient)
        gradient = gradient.cuda(self.rank)
        fut = torch.futures.Future()
        with self.lock:
            if self.batch_number < received_batch_number:
                self.batch_number = received_batch_number
                self.clear_batch_state()
            self.process_gradient(gradient, param_loc)
            if param_loc not in self.futures:
                self.futures[param_loc] = []
            self.futures[param_loc].append(fut)
            if len(self.futures[param_loc]) == self.trainer_count:
                self.record_straggler_end(self.param_key(param_loc))
                param_loc_avg = self.average(param_loc)
                if not self.use_cuda_rpc:
                    param_loc_avg = param_loc_avg.cpu()
                if param_loc_avg.is_sparse:
                    param_loc_avg = sparse_tensor_to_rpc_format(param_loc_avg)
                for cur_fut in self.futures[param_loc]:
                    cur_fut.set_result(param_loc_avg)
                self.record_batch_end(self.param_key(param_loc))
        return fut


class AverageBatchParameterServer(AverageParameterServer):

    def __init__(
        self,
        rank,
        trainer_count,
        use_cuda_rpc
    ):
        r"""
        A parameter server that averages the gradients
        from trainers for each training iteration step.
        Gradients are stored and averaged when a gradient
        has been received from each trainer for a param
        location.
        Args:
            rank (int): worker rank
            trainer_count (int): count of trainers sending
                gradients to the server
            use_cuda_rpc (bool): indicator for CUDA RPC
        """
        super().__init__(rank, trainer_count, use_cuda_rpc)

    def process_gradient(self, gradient, param_loc):
        r"""
        Adds the gradient to param_loc bucket stored in
        the gradient_dict.
        Args:
            gradient (torch.Tensor): tensor sent from trainer
            param_loc (int): bucket location sent by the trainer
                containing the gradient
        """
        if param_loc not in self.gradient_dict:
            self.record_straggler_start(self.param_key(param_loc))
            self.record_batch_start(self.param_key(param_loc))
            self.gradient_dict[param_loc] = []
        self.gradient_dict[param_loc].append(gradient)

    @ParameterServerBase.record_method(name="average computation")
    def average(self, param_loc):
        r"""
        Sums the gradients at the param_loc then divides by the
        number of trainers.
        Args:
            param_loc (int): bucket location sent by the trainer
                containing the gradient
        """
        param_loc_avg = self.gradient_dict[param_loc][0]
        for gradient in self.gradient_dict[param_loc][1:]:
            param_loc_avg += gradient
        param_loc_avg / (1.0 * self.trainer_count)
        return param_loc_avg