1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
import argparse
from collections import namedtuple
import torch
import gc
import sys
import json
import copy
import time
from torch.autograd.profiler import record_function
from .fuser import set_fuser
from .runner import get_nn_runners
BenchResult = namedtuple('BenchResult', [
'name', 'avg_fwd', 'std_fwd', 'info_fwd', 'avg_bwd', 'std_bwd', 'info_bwd',
])
def fit_str(string, colwidth=16):
if len(string) < colwidth:
return (colwidth - len(string)) * ' ' + string
else:
return string[:colwidth]
def to_str(item):
if isinstance(item, float):
return '%.4g' % item
return str(item)
def print_header(colwidth=16, sep=' '):
items = []
for item in BenchResult._fields:
items.append(fit_str(item))
return sep.join(items)
def pretty_print(benchresult, colwidth=16, sep=' '):
items = []
for thing in benchresult:
items.append(fit_str(to_str(thing)))
return sep.join(items)
# shim for torch.cuda.Event when running on cpu
class Event(object):
def __init__(self, enable_timing):
pass
def record(self):
self.time = time.perf_counter()
def elapsed_time(self, end_event):
assert isinstance(end_event, Event)
return end_event.time - self.time
def trainbench(name, rnn_creator, nloops=100, warmup=10,
seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, device='cuda', seed=None):
def train_batch(modeldef):
# CUDA events for timing
if device == 'cuda':
timer_class = torch.cuda.Event
else:
timer_class = Event
fwd_start_event = timer_class(enable_timing=True)
fwd_end_event = timer_class(enable_timing=True)
bwd_start_event = timer_class(enable_timing=True)
bwd_end_event = timer_class(enable_timing=True)
gc.collect()
fwd_start_event.record()
with record_function("## forward ##"):
forward_output = modeldef.forward(*modeldef.inputs)
fwd_end_event.record()
# XXX: Use if need to print something
# print(modeldef.forward.graph_for(*modeldef.inputs))
if modeldef.backward_setup is not None:
backward_input = modeldef.backward_setup(forward_output)
else:
backward_input = forward_output
gc.collect()
bwd_start_event.record()
if modeldef.backward is not None:
modeldef.backward(*backward_input)
bwd_end_event.record()
if modeldef.backward is not None:
with torch.no_grad():
for param in modeldef.params:
assert param.grad is not None
param.grad.zero_()
if device == 'cuda':
torch.cuda.synchronize()
fwd_time = fwd_start_event.elapsed_time(fwd_end_event)
bwd_time = bwd_start_event.elapsed_time(bwd_end_event)
return fwd_time, bwd_time
creator_args = creator_args = {
'seqLength': seqLength, 'numLayers': numLayers,
'inputSize': inputSize, 'hiddenSize': hiddenSize,
'miniBatch': miniBatch, 'device': device, 'seed': seed
}
modeldef = rnn_creator(**creator_args)
[train_batch(modeldef) for _ in range(warmup)]
results = [train_batch(modeldef) for _ in range(nloops)]
fwd_times, bwd_times = zip(*results)
fwd_times = torch.tensor(fwd_times)
bwd_times = torch.tensor(bwd_times)
return BenchResult(name=name,
avg_fwd=fwd_times.mean().item(),
std_fwd=fwd_times.std().item(),
info_fwd=fwd_times,
avg_bwd=bwd_times.mean().item(),
std_bwd=bwd_times.std().item(),
info_bwd=bwd_times)
def print_stderr(*args, **kwargs):
kwargs['file'] = sys.stderr
return print(*args, **kwargs)
def print_json_oss_format(results):
oss_results = {}
for group_name, group_val in results.items():
oss_results[group_name] = {}
for model_name, run_time in group_val.items():
# Output for OSS
oss_results[group_name][model_name] = run_time['avg']
print(json.dumps(oss_results))
def print_json_pep_format(results):
# print the AI-PEP format json string for each model
for group_name, group_val in results.items():
for model_name, run_time in group_val.items():
# Output for AI-PEP
num_iters = len(run_time['info'])
info = run_time['info'].tolist()
for i in range(num_iters):
print("Caffe2Observer " + json.dumps(
{
"type": "NET",
"metric": group_name + "-" + model_name,
"unit": "ms",
"value": str(info[i])
}
))
def bench(rnn_runners, group_name, print_json=False, sep=' ', **params):
print_stderr(print_header(sep=sep))
results = {}
for name, creator, context in rnn_runners:
with context():
try:
result = trainbench(name, creator, **params)
# Replace the value of info_fwd and info_bwd to None
result_with_no_info = result._replace(
info_fwd='None', info_bwd='None')
print_stderr(pretty_print(result_with_no_info, sep=sep))
results[name] = result
except Exception as e:
if not print_json:
raise
return {
group_name: {k: {"avg": v.avg_fwd, "std": v.std_fwd, "info": v.info_fwd} for k, v in results.items()},
group_name + '-backward': {k: {"avg": v.avg_bwd, "std": v.std_bwd, "info": v.info_bwd} for k, v in results.items()},
}
def bench_group(model_list, bench_name, bench_group, bench_args):
print_stderr('Benchmarking {}s...'.format(bench_name))
nn_results = bench(get_nn_runners(*model_list), bench_group, **bench_args)
print_stderr('')
return nn_results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Profile RNNs')
# groups help control which test group you want to run
# if you only want to run one/two benchmark, run it with
# e.g: python -m fastrnns.bench --rnns jit and --group rnns
default_groups = ['cnns', 'rnns']
parser.add_argument('--seqLength', default='100', type=int)
parser.add_argument('--numLayers', default='1', type=int)
parser.add_argument('--inputSize', default='512', type=int)
parser.add_argument('--hiddenSize', default='512', type=int)
parser.add_argument('--miniBatch', default='64', type=int)
parser.add_argument('--warmup', default='10', type=int)
parser.add_argument('--nloops', default='100', type=int)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--variable_lstms', action='store_true',
help='Also benchmark variable sequence length lstms '
'Note that some of these run really slowly '
'and that the `seqLength` flag will be ignored.')
parser.add_argument('--sep', default=' ', type=str)
parser.add_argument('--print-json', nargs='?', default=None, const='oss')
parser.add_argument('--rnns', nargs='*',
help='What to run. cudnn, aten, jit, etc')
parser.add_argument('--cnns', nargs='*',
help='What to run. resnet18, resnet18_jit, resnet50, etc')
parser.add_argument('--group', nargs='*', default=default_groups, help='Which group to run. cnns, rnns, etc.')
parser.add_argument('--fuser', default='te', type=str,
help='The fuser backend to use. One of: te, old, or none')
parser.add_argument('--executor', default=None, type=str,
help='The executor to use. One of: legacy, simple, profiling')
parser.add_argument('--cuda_pointwise_loop_level', default=None, type=int)
parser.add_argument('--cuda_pointwise_block_count', default=None, type=int)
parser.add_argument('--cuda_pointwise_block_size', default=None, type=int)
args = parser.parse_args()
set_fuser(args.fuser, args.executor)
if args.cuda_pointwise_loop_level:
torch._C._jit_set_te_cuda_pointwise_loop_levels(args.cuda_pointwise_loop_level)
if args.cuda_pointwise_block_count:
torch._C._jit_set_te_cuda_pointwise_block_count(args.cuda_pointwise_block_count)
if args.cuda_pointwise_block_size:
torch._C._jit_set_te_cuda_pointwise_block_size(args.cuda_pointwise_block_size)
rnns = args.rnns or ['cudnn', 'aten', 'jit', 'jit_premul', 'jit_premul_bias', 'jit_simple',
'jit_multilayer', 'py']
cnns = args.cnns or ['resnet18', 'resnet18_jit', 'resnet50', 'resnet50_jit']
# TODO: Maybe add a separate section for the layernorm/dropout lstms
# 'cudnn_layernorm', jit_layernorm', 'jit_layernom_decom',
# 'jit', 'jit_dropout', 'cudnn_dropout'
vlrnns = ['vl_cudnn', 'vl_jit', 'vl_py']
if args.print_json:
print_stderr = lambda *args, **kwargs: None # noqa: E731,F811
print_stderr(args)
bench_args = copy.deepcopy(vars(args))
should_bench_varlen_lstms = args.variable_lstms
del bench_args['group']
del bench_args['rnns']
del bench_args['cnns']
del bench_args['variable_lstms']
del bench_args['fuser']
del bench_args['executor']
del bench_args['cuda_pointwise_loop_level']
del bench_args['cuda_pointwise_block_count']
del bench_args['cuda_pointwise_block_size']
results = {}
if should_bench_varlen_lstms:
if args.nloops + args.warmup > 30:
print_stderr(
'WARNING: some of the variable sequence length lstms are '
'very unoptimized and therefore take forever to run.')
results.update(bench_group(vlrnns, 'variable-length sequence LSTM', 'vl_lstm', bench_args))
if 'rnns' in args.group:
results.update(bench_group(rnns, 'LSTM', 'lstm', bench_args))
if 'cnns' in args.group:
results.update(bench_group(cnns, 'ResNet', 'resnet', bench_args))
if args.print_json == 'oss':
print_json_oss_format(results)
elif args.print_json == 'pep':
print_json_pep_format(results)
|