1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
import torch
from typing import Tuple
from torch import Tensor
def milstm_cell(x, hx, cx, w_ih, w_hh, alpha, beta_i, beta_h, bias):
Wx = x.mm(w_ih.t())
Uz = hx.mm(w_hh.t())
# Section 2.1 in https://arxiv.org/pdf/1606.06630.pdf
gates = (alpha * Wx * Uz + beta_i * Wx + beta_h * Uz + bias)
# Same as LSTMCell after this point
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = ingate.sigmoid()
forgetgate = forgetgate.sigmoid()
cellgate = cellgate.tanh()
outgate = outgate.sigmoid()
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * cy.tanh()
return hy, cy
def lstm_cell(input: Tensor, hidden: Tuple[Tensor, Tensor], w_ih: Tensor,
w_hh: Tensor, b_ih: Tensor, b_hh: Tensor) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def flat_lstm_cell(input: Tensor, hx: Tensor, cx: Tensor, w_ih: Tensor,
w_hh: Tensor, b_ih: Tensor, b_hh: Tensor) -> Tuple[Tensor, Tensor]:
gates = torch.mm(input, w_ih.t()) + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell(igates: Tensor, hidden: Tuple[Tensor, Tensor], w_hh: Tensor,
b_ih: Tensor, b_hh: Tensor) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def premul_lstm_cell_no_bias(igates: Tensor, hidden: Tuple[Tensor, Tensor], w_hh: Tensor, b_hh: Tensor) -> Tuple[Tensor, Tensor]:
hx, cx = hidden
gates = igates + torch.mm(hx, w_hh.t()) + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def gru_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
gi = torch.mm(input, w_ih.t()) + b_ih
gh = torch.mm(hidden, w_hh.t()) + b_hh
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
resetgate = torch.sigmoid(i_r + h_r)
inputgate = torch.sigmoid(i_i + h_i)
newgate = torch.tanh(i_n + resetgate * h_n)
hy = newgate + inputgate * (hidden - newgate)
return hy
def rnn_relu_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.relu(igates + hgates)
def rnn_tanh_cell(input, hidden, w_ih, w_hh, b_ih, b_hh):
igates = torch.mm(input, w_ih.t()) + b_ih
hgates = torch.mm(hidden, w_hh.t()) + b_hh
return torch.tanh(igates + hgates)
|