1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
import torch
from collections import namedtuple
from typing import List, Tuple
from torch import Tensor
from .cells import lstm_cell, premul_lstm_cell, premul_lstm_cell_no_bias, flat_lstm_cell
# list[list[T]] -> list[T]
def flatten_list(lst):
result = []
for inner in lst:
result.extend(inner)
return result
'''
Define a creator as a function:
(options) -> (inputs, params, forward, backward_setup, backward)
inputs: the inputs to the returned 'forward'. One can call
forward(*inputs) directly.
params: List[Tensor] all requires_grad=True parameters.
forward: function / graph executor / module
One can call rnn(rnn_inputs) using the outputs of the creator.
backward_setup: backward_inputs = backward_setup(*outputs)
Then, we pass backward_inputs to backward. If None, then it is assumed to
be the identity function.
backward: Given `output = backward_setup(*forward(*inputs))`, performs
backpropagation. If None, then nothing happens.
fastrnns.bench times the forward and backward invocations.
'''
ModelDef = namedtuple('ModelDef', [
'inputs', 'params', 'forward', 'backward_setup', 'backward'])
def lstm_backward_setup(lstm_outputs, seed=None):
hx, _ = lstm_outputs
return simple_backward_setup(hx, seed)
def simple_backward_setup(output, seed=None):
assert isinstance(output, torch.Tensor)
if seed:
torch.manual_seed(seed)
grad_output = torch.randn_like(output)
return output, grad_output
def simple_backward(output, grad_output, **kwargs):
return output.backward(grad_output, **kwargs)
def pytorch_lstm_creator(**kwargs):
input, hidden, _, module = lstm_inputs(return_module=True, **kwargs)
return ModelDef(
inputs=[input, hidden],
params=flatten_list(module.all_weights),
forward=module,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory(lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lnlstm_creator(script=True, decompose_layernorm=False, **kwargs):
assert script is True
from .custom_lstms import script_lnlstm
input_size = kwargs['inputSize']
hidden_size = kwargs['hiddenSize']
seq_len = kwargs['seqLength']
batch_size = kwargs['miniBatch']
ge = script_lnlstm(input_size, hidden_size, 1,
decompose_layernorm=decompose_layernorm).cuda()
input = torch.randn(seq_len, batch_size, input_size, device='cuda')
states = [(torch.randn(batch_size, hidden_size, device='cuda'),
torch.randn(batch_size, hidden_size, device='cuda'))]
return ModelDef(
inputs=[input, states],
params=ge.parameters(),
forward=ge,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def dropoutlstm_creator(script=True, **kwargs):
assert script is True
from .custom_lstms import script_lstm, LSTMState
input_size = kwargs['inputSize']
hidden_size = kwargs['hiddenSize']
seq_len = kwargs['seqLength']
batch_size = kwargs['miniBatch']
num_layers = kwargs['numLayers']
ge = script_lstm(input_size, hidden_size, num_layers, dropout=True).cuda()
input = torch.randn(seq_len, batch_size, input_size, device='cuda')
states = [LSTMState(torch.randn(batch_size, hidden_size, device='cuda'),
torch.randn(batch_size, hidden_size, device='cuda'))
for _ in range(num_layers)]
return ModelDef(
inputs=[input, states],
params=ge.parameters(),
forward=ge,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_premul_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_premul(premul_lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_premul_bias_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_premul_bias(premul_lstm_cell_no_bias, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_simple_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input] + [h[0] for h in hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_simple(flat_lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_multilayer_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden, flatten_list(params)]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_multilayer(lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def imagenet_cnn_creator(arch, jit=True):
def creator(device='cuda', **kwargs):
model = arch().to(device)
x = torch.randn(32, 3, 224, 224, device=device)
if jit:
model = torch.jit.trace(model, x)
return ModelDef(
inputs=(x,),
params=list(model.parameters()),
forward=model,
backward_setup=simple_backward_setup,
backward=simple_backward)
return creator
def varlen_lstm_inputs(minlen=30, maxlen=100,
numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, return_module=False, device='cuda',
seed=None, **kwargs):
if seed is not None:
torch.manual_seed(seed)
lengths = torch.randint(
low=minlen, high=maxlen, size=[miniBatch],
dtype=torch.long, device=device)
x = [torch.randn(length, inputSize, device=device)
for length in lengths]
hx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
cx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
lstm = torch.nn.LSTM(inputSize, hiddenSize, numLayers).to(device)
if return_module:
return x, lengths, (hx, cx), lstm.all_weights, lstm
else:
# NB: lstm.all_weights format:
# wih, whh, bih, bhh = lstm.all_weights[layer]
return x, lengths, (hx, cx), lstm.all_weights, None
def varlen_lstm_backward_setup(forward_output, seed=None):
if seed:
torch.manual_seed(seed)
rnn_utils = torch.nn.utils.rnn
sequences = forward_output[0]
padded = rnn_utils.pad_sequence(sequences)
grad = torch.randn_like(padded)
return padded, grad
def varlen_pytorch_lstm_creator(**kwargs):
rnn_utils = torch.nn.utils.rnn
sequences, _, hidden, _, module = varlen_lstm_inputs(
return_module=True, **kwargs)
def forward(sequences, hidden):
packed = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
out, new_hidden = module(packed, hidden)
padded, lengths = rnn_utils.pad_packed_sequence(out)
# XXX: It's more efficient to store the output in its padded form,
# but that might not be conducive to loss computation.
# Un-padding the output also makes the backward pass 2x slower...
# return [padded[:lengths[i], i, :] for i in range(lengths.size(0))]
return padded, new_hidden
return ModelDef(
inputs=[sequences, hidden],
params=flatten_list(module.all_weights),
forward=forward,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def varlen_lstm_factory(cell, script):
def dynamic_rnn(sequences: List[Tensor], hiddens: Tuple[Tensor, Tensor], wih: Tensor,
whh: Tensor, bih: Tensor, bhh: Tensor
) -> Tuple[List[Tensor], Tuple[List[Tensor], List[Tensor]]]:
hx, cx = hiddens
hxs = hx.unbind(1)
cxs = cx.unbind(1)
# List of: (output, hx, cx)
outputs = []
hx_outs = []
cx_outs = []
for batch in range(len(sequences)):
output = []
hy, cy = hxs[batch], cxs[batch]
inputs = sequences[batch].unbind(0)
for seq_idx in range(len(inputs)):
hy, cy = cell(
inputs[seq_idx].unsqueeze(0), (hy, cy), wih, whh, bih, bhh)
output += [hy]
outputs += [torch.stack(output)]
hx_outs += [hy.unsqueeze(0)]
cx_outs += [cy.unsqueeze(0)]
return outputs, (hx_outs, cx_outs)
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
def varlen_lstm_creator(script=False, **kwargs):
sequences, _, hidden, params, _ = varlen_lstm_inputs(
return_module=False, **kwargs)
inputs = [sequences, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=varlen_lstm_factory(lstm_cell, script),
backward_setup=varlen_lstm_backward_setup,
backward=simple_backward)
# cudnn_layernorm_lstm: since cudnn does not have Layernorm LSTM, we cannot benchmark
# the lowerbound directly. Instead, we only benchmark the forward pass by mimicing the
# computation of a cudnn lstm + seq_len * 3 layernorm computation. This should serve
# as a perf lowerbound for the Layernorm LSTM forward pass(given that Layernorm itself
# is invariant), the lowerbound of backward pass is hard to get since we lose the
# intermediate results, we can still optimize the layernorm implementation to make
# a faster forward lowerbound though.
def layernorm_pytorch_lstm_creator(**kwargs):
input, hidden, _, module = lstm_inputs(return_module=True, **kwargs)
batch_size = kwargs['miniBatch']
hidden_size = kwargs['hiddenSize']
ln_i = torch.nn.LayerNorm(4 * hidden_size).cuda()
ln_h = torch.nn.LayerNorm(4 * hidden_size).cuda()
ln_c = torch.nn.LayerNorm(hidden_size).cuda()
ln_input1 = torch.randn(batch_size, 4 * hidden_size, device='cuda')
def forward(input, hidden):
out, new_hidden = module(input, hidden)
# plus (seq_len * three laynorm cell computation) to mimic the lower bound of
# Layernorm cudnn LSTM in the forward pass
seq_len = len(input.unbind(0))
hy, cy = new_hidden
for i in range(seq_len):
ln_i_output = ln_i(ln_input1)
ln_h_output = ln_h(ln_input1)
cy = ln_c(cy)
return out, (hy, cy)
return ModelDef(
inputs=[input, hidden],
params=flatten_list(module.all_weights),
forward=forward,
backward_setup=lstm_backward_setup,
backward=None)
# input: lstm.all_weights format (wih, whh, bih, bhh = lstm.all_weights[layer])
# output: packed_weights with format
# packed_weights[0] is wih with size (layer, 4*hiddenSize, inputSize)
# packed_weights[1] is whh with size (layer, 4*hiddenSize, hiddenSize)
# packed_weights[2] is bih with size (layer, 4*hiddenSize)
# packed_weights[3] is bhh with size (layer, 4*hiddenSize)
def stack_weights(weights):
def unzip_columns(mat):
assert isinstance(mat, list)
assert isinstance(mat[0], list)
layers = len(mat)
columns = len(mat[0])
return [[mat[layer][col] for layer in range(layers)]
for col in range(columns)]
# XXX: script fns have problems indexing multidim lists, so we try to
# avoid them by stacking tensors
all_weights = weights
packed_weights = [torch.stack(param)
for param in unzip_columns(all_weights)]
return packed_weights
# returns: x, (hx, cx), all_weights, lstm module with all_weights as params
def lstm_inputs(seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, dropout=0.0, return_module=False, device='cuda', seed=None):
if seed is not None:
torch.manual_seed(seed)
x = torch.randn(seqLength, miniBatch, inputSize, device=device)
hx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
cx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
lstm = torch.nn.LSTM(inputSize, hiddenSize, numLayers, dropout=dropout)
if 'cuda' in device:
lstm = lstm.cuda()
if return_module:
return x, (hx, cx), lstm.all_weights, lstm
else:
# NB: lstm.all_weights format:
# wih, whh, bih, bhh = lstm.all_weights[layer]
return x, (hx, cx), lstm.all_weights, None
def lstm_factory(cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inputs = input.unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], (hy, cy), wih, whh, bih, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# premul: we're going to premultiply the inputs & weights
def lstm_factory_premul(premul_cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inputs = torch.matmul(input, wih.t()).unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = premul_cell(inputs[seq_idx], (hy, cy), whh, bih, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
premul_cell = torch.jit.script(premul_cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# premul: we're going to premultiply the inputs & weights, and add bias
def lstm_factory_premul_bias(premul_cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inpSize = input.size()
# add bias for all timesteps instead of going step-by-step, results in a single reduction kernel in the backward
# FIXME matmul(x,y) + bias currently goes through jit AD, and backward formula in AD is not optimized for this
# case. Workaround with mm and views.
inpSize = input.size()
inputs = torch.mm(input.view(-1, inpSize[2]), wih.t()) + bih
inputs = inputs.view(inpSize[0], inpSize[1], -1).unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = premul_cell(inputs[seq_idx], (hy, cy), whh, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
premul_cell = torch.jit.script(premul_cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# simple: flat inputs (no tuples), no list to accumulate outputs
# useful mostly for benchmarking older JIT versions
def lstm_factory_simple(cell, script):
def dynamic_rnn(input, hx, cx, wih, whh, bih, bhh):
hy = hx # for scoping
cy = cx # for scoping
inputs = input.unbind(0)
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], hy, cy, wih, whh, bih, bhh)
return hy, cy
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
def lstm_factory_multilayer(cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], params: List[Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
params_stride = 4 # NB: this assumes that biases are there
hx, cx = hidden
hy, cy = hidden # for scoping...
inputs, outputs = input.unbind(0), []
for layer in range(hx.size(0)):
hy = hx[layer]
cy = cx[layer]
base_idx = layer * params_stride
wih = params[base_idx]
whh = params[base_idx + 1]
bih = params[base_idx + 2]
bhh = params[base_idx + 3]
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], (hy, cy), wih, whh, bih, bhh)
outputs += [hy]
inputs, outputs = outputs, []
return torch.stack(inputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
|