1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
import argparse
import subprocess
import sys
import time
import torch
import datetime
from .runner import get_nn_runners
def run_rnn(name, rnn_creator, nloops=5,
seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, device='cuda', seed=None):
def run_iter(modeldef):
# Forward
forward_output = modeldef.forward(*modeldef.inputs)
# "loss computation" and backward
if modeldef.backward_setup is not None:
backward_input = modeldef.backward_setup(forward_output)
else:
backward_input = forward_output
if modeldef.backward is not None:
modeldef.backward(*backward_input)
# "Update" parameters
if modeldef.backward is not None:
with torch.no_grad():
for param in modeldef.params:
param.grad.zero_()
torch.cuda.synchronize()
assert device == 'cuda'
creator_args = dict(seqLength=seqLength, numLayers=numLayers,
inputSize=inputSize, hiddenSize=hiddenSize,
miniBatch=miniBatch, device=device, seed=seed)
modeldef = rnn_creator(**creator_args)
[run_iter(modeldef) for _ in range(nloops)]
def profile(rnns, sleep_between_seconds=1, nloops=5,
internal_run=True, # Unused, get rid of this TODO
seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, device='cuda', seed=None):
params = dict(seqLength=seqLength, numLayers=numLayers,
inputSize=inputSize, hiddenSize=hiddenSize,
miniBatch=miniBatch, device=device, seed=seed)
for name, creator, context in get_nn_runners(*rnns):
with context():
run_rnn(name, creator, nloops, **params)
time.sleep(sleep_between_seconds)
def system(command):
"""Returns (return-code, stdout, stderr)"""
print('[system] {}'.format(command))
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
output = output.decode("ascii")
err = err.decode("ascii")
return rc, output, err
def describe_sizes(**sizes):
# seqLength, numLayers, inputSize, hiddenSize, miniBatch
return 's{}-l{}-i{}-h{}-b{}'.format(
sizes['seqLength'],
sizes['numLayers'],
sizes['inputSize'],
sizes['hiddenSize'],
sizes['miniBatch'],
)
OUTPUT_DIR = '~/profout/'
def nvprof_output_filename(rnns, **params):
rnn_tag = '-'.join(rnns)
size_tag = describe_sizes(**params)
date_tag = datetime.datetime.now().strftime("%m%d%y-%H%M")
return '{}prof_{}_{}_{}.nvvp'.format(OUTPUT_DIR, rnn_tag,
size_tag, date_tag)
def nvprof(cmd, outpath):
return system('nvprof -o {} {}'.format(outpath, cmd))
def full_profile(rnns, **args):
profile_args = []
for k, v in args.items():
profile_args.append('--{}={}'.format(k, v))
profile_args.append('--rnns {}'.format(' '.join(rnns)))
profile_args.append('--internal_run')
outpath = nvprof_output_filename(rnns, **args)
cmd = '{} -m fastrnns.profile {}'.format(
sys.executable, ' '.join(profile_args))
rc, stdout, stderr = nvprof(cmd, outpath)
if rc != 0:
raise RuntimeError('stderr: {}\nstdout: {}'.format(stderr, stdout))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Profile RNNs')
parser.add_argument('--seqLength', default='100', type=int)
parser.add_argument('--numLayers', default='1', type=int)
parser.add_argument('--inputSize', default='512', type=int)
parser.add_argument('--hiddenSize', default='512', type=int)
parser.add_argument('--miniBatch', default='64', type=int)
parser.add_argument('--sleep_between_seconds', default='1', type=int)
parser.add_argument('--nloops', default='5', type=int)
parser.add_argument('--rnns', nargs='*',
help='What to run. cudnn, aten, jit, etc')
# if internal_run, we actually run the rnns.
# if not internal_run, we shell out to nvprof with internal_run=T
parser.add_argument('--internal_run', default=False, action='store_true',
help='Don\'t use this')
args = parser.parse_args()
if args.rnns is None:
args.rnns = ['cudnn', 'aten', 'jit']
print(args)
if args.internal_run:
profile(**vars(args))
else:
full_profile(**vars(args))
|