File: scratch.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (51 lines) | stat: -rw-r--r-- 1,048 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch


@torch.jit.script
def fn(x, scale, shift):
    return scale * x / shift


@torch.jit.script
def recurrent(x, scale, shift):
    y = x
    for i in range(100):
        y = fn(y, scale, shift)
    return y


x = torch.randn(2, 2, device='cuda')
scale = torch.randn(2, 2, device='cuda', requires_grad=True)
shift = torch.randn(2, 2, device='cuda', requires_grad=True)
inputs = [x, scale, shift]


out = recurrent(x, scale, shift)
recurrent.graph_for(x, scale, shift)


import torch


@torch.jit.script
def recurrent_scaleshift(x, scale, shift):
    y = x
    for i in range(64):
        y = scale * y + shift
    return y


x = torch.randn(2, 2, device='cuda')
scale = torch.randn(2, 2, device='cuda', requires_grad=True)
shift = torch.randn(2, 2, device='cuda', requires_grad=True)
inputs = [x, scale, shift]
out = recurrent_scaleshift(x, scale, shift)
recurrent_scaleshift.graph_for(x, scale, shift)


import torch
x = torch.tensor([])
x.requires_grad = True
x.mean().backward()  # no error triggered
x = x.cuda()
x.mean().backward()