File: test_bench.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (47 lines) | stat: -rw-r--r-- 1,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pytest
import torch
from .fuser import set_fuser
from .runner import get_nn_runners

@pytest.fixture(scope='class')
def modeldef(request, net_name, executor, fuser):
    set_fuser(fuser, executor)

    # Given a 'net_name' provided by generate_tests, build the thing
    name, rnn_creator, context = get_nn_runners(net_name)[0]
    creator_args = creator_args = {
        'seqLength': 100, 'numLayers': 1,
        'inputSize': 512, 'hiddenSize': 512,
        'miniBatch': 64, 'device': 'cuda', 'seed': None
    }
    return rnn_creator(**creator_args)

def cuda_sync(func, *args, **kwargs):
    out = func(*args, **kwargs)
    torch.cuda.synchronize()
    return out

@pytest.mark.benchmark(
    warmup=True,
    warmup_iterations=3,
    disable_gc=True,
    max_time=0.1,
    group="fastrnns",
)
class TestBenchNetwork:
    # See 'modeldef' fixture, which provides the things to benchmark
    def test_forward(self, modeldef, benchmark):
        forward_output = benchmark(cuda_sync, modeldef.forward, *modeldef.inputs)

    def test_backward(self, modeldef, benchmark):
        backward_input = modeldef.forward(*modeldef.inputs)
        if modeldef.backward_setup is not None:
            backward_input = modeldef.backward_setup(backward_input)

        if modeldef.backward is not None:
            benchmark(cuda_sync, modeldef.backward, *backward_input, retain_graph=True)

            with torch.no_grad():
                for param in modeldef.params:
                    assert param.grad is not None
                    param.grad.zero_()