File: utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (34 lines) | stat: -rw-r--r-- 1,227 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import time
from collections import namedtuple
from torch.utils import ThroughputBenchmark

NUM_LOOP_ITERS = 1000
BenchmarkConfig = namedtuple('BenchmarkConfig', 'num_warmup_iters num_iters')
ModuleConfig = namedtuple('ModuleConfig', 'pt_fn c2_op num_params graph_mode')

def ms_to_us(time_ms):
    return (time_ms * 1e3)

def secs_to_us(time_s):
    return (time_s * 1e6)

def secs_to_ms(time_s):
    return (time_s * 1e3)

def benchmark_using_throughput_benchmark(config, module):
    print("Benchmarking via ThroughputBenchmark")
    bench = ThroughputBenchmark(module.module)
    bench.add_input(*module.tensor_inputs)
    stats = bench.benchmark(1, config.num_warmup_iters, config.num_iters)
    return stats.latency_avg_ms / NUM_LOOP_ITERS

def benchmark_module(config, module, use_throughput_benchmark=False):
    if use_throughput_benchmark:
        return benchmark_using_throughput_benchmark(config, module)
    module.forward(config.num_warmup_iters)
    print("Running module for {} iterations".format(config.num_iters))
    start = time.time()
    module.forward(config.num_iters)
    end = time.time()
    time_elapsed_s = (end - start)
    return (secs_to_ms(time_elapsed_s) / config.num_iters / NUM_LOOP_ITERS)