1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
# Benchmarking tool for the autograd API
This folder contain a set of self-contained scripts that allow to benchmark the autograd with different common models.
It is designed to run the benchmark before and after your change and will generate a table to share on the PR.
To do so, you can use `functional_autograd_benchmark.py` to run the benchmarks before your change (using as output `before.txt`) and after your change (using as output `after.txt`).
You can then use `compare.py` to get a markdown table comparing the two runs.
The default arguments of `functional_autograd_benchmark.py` should be used in general. You can change them though to force a given device or force running even the (very) slow settings.
### Sample usage
```bash
# Make sure you compile pytorch in release mode and with the same flags before/after
export DEBUG=0
# When running on CPU, it might be required to limit the number of cores to avoid oversubscription
export OMP_NUM_THREADS=10
# Compile pytorch with the base revision
git checkout master
python setup.py develop
# Install dependencies:
# Scipy is required by detr
pip install scipy
# Run the benchmark for the base
# This will use the GPU if available.
pushd benchmarks/functional_autograd_benchmark
python functional_autograd_benchmark.py --output before.txt
# Compile pytorch with your change
popd
git checkout your_feature_branch
python setup.py develop
# Run the benchmark for the new version
pushd benchmarks/functional_autograd_benchmark
python functional_autograd_benchmark.py --output after.txt
# Get the markdown table that you can paste in your github PR
python compare.py
popd
```
### Files in this folder:
- `functional_autograd_benchmark.py` is the main entry point to run the benchmark.
- `compare.py` is the entry point to run the comparison script that generates a markdown table.
- `torchaudio_models.py` and `torchvision_models.py` contains code extracted from torchaudio and torchvision to be able to run the models without having a specific version of these libraries installed.
- `ppl_models.py`, `vision_models.py` and `audio_text_models.py` contain all the getter functions used for the benchmark.
### Benchmarking against `functorch`
```bash
# Install stable functorch:
pip install functorch
# or install from source:
pip install git+https://github.com/pytorch/functorch
# Run the benchmark for the base
# This will use the GPU if available.
pushd benchmarks/functional_autograd_benchmark
python functional_autograd_benchmark.py --output bench-with-functorch.txt
```
|