File: api.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (419 lines) | stat: -rw-r--r-- 15,531 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""Key enums and structs used to handle data flow within the benchmark."""
import dataclasses
import enum
import itertools as it
import re
import textwrap
from typing import Dict, List, Optional, Set, Tuple, Union, TYPE_CHECKING

from worker.main import WorkerTimerArgs

if TYPE_CHECKING:
    # Benchmark utils are only partially strict compliant, so MyPy won't follow
    # imports using the public namespace. (Due to an exclusion rule in
    # mypy-strict.ini)
    from torch.utils.benchmark.utils.timer import Language
else:
    from torch.utils.benchmark import Language


# Note:
#   WorkerTimerArgs is defined in worker.main so that the worker does not
#   depend on any files, including core.api. We mirror it with a public symbol
#   `TimerArgs` for API consistency.
TimerArgs = WorkerTimerArgs


class RuntimeMode(enum.Enum):
    EAGER = "Eager"
    JIT = "TorchScript"
    EXPLICIT = ""


class AutogradMode(enum.Enum):
    FORWARD = "Forward"
    FORWARD_BACKWARD = "Forward + Backward"
    EXPLICIT = ""


@dataclasses.dataclass(frozen=True)
class AutoLabels:
    """Labels for a TimerArgs instance which are inferred during unpacking."""
    runtime: RuntimeMode
    autograd: AutogradMode
    language: Language

    @property
    def as_dict(self) -> Dict[str, str]:
        """Dict representation for CI reporting."""
        return {
            "runtime": self.runtime.value,
            "autograd": self.autograd.value,
            "language": "Python" if self.language == Language.PYTHON else "C++",
        }


@dataclasses.dataclass(frozen=True)
class GroupedSetup:
    py_setup: str = ""
    cpp_setup: str = ""
    global_setup: str = ""

    def __post_init__(self) -> None:
        for field in dataclasses.fields(self):
            assert field.type == str
            value: str = getattr(self, field.name)
            object.__setattr__(self, field.name, textwrap.dedent(value))


@dataclasses.dataclass(frozen=True)
class GroupedBenchmark:
    """Base class for defining groups of benchmarks.

    Concrete interfaces:
     - `core.api.GroupedStmts`     (init_from_stmts)
     - `core.api.GroupedModules`   (init_from_model)
     - `core.api.GroupedVariants`  (init_from_variants)

    There are a variety of dimensions along which one might wish to measure
    PyTorch performance:
      - Python, C++
      - Eager, TorchScript
      - Single threaded, multi threaded
      - Training, inference

    It is useful to define them together, both for clear, concise benchmark
    definition and more intelligent post processing and analysis.

    There are also two programming idioms in PyTorch. One is to write free form
    code (so-called "NumPy with gradients"), and the other is to organize code
    using `torch.nn.Module`s. (This is how common neural network layers are
    exposed through the PyTorch API.) To support easy definition two simple
    initialization methods are provided:
     - `init_from_stmts`
     - `init_from_model`

    Those methods will document their unique constructor arguments, however
    most are shared and are defined here:
        setup: Defines how to initialize a benchmark in both Python and C++.
        signature:
            A string of the form:
            ```
                f(a, b, ...) -> c
            ```
            For instance, if Python setup is:
            ```
                x = torch.ones((2,), requires_grad=True)
                y = torch.ones((2,))
            ```
            and the corresponding stmt is:
            ```
                z = torch.dot(x, y)
            ```
            Then the signature is `f(x, y) -> z`. `signature` is required any
            time we need to generate part of a snippet:
             - When calling an opaque model provided by `init_from_models`
             - When `torchscript=True`
             - When `autograd=True`

            If a return value is not needed (e.g. because of in place mutation)
            then `-> None` is valid, but a non-None return must be provided if
            `autograd=True`

        torchscript:
            If True, also JIT the stmt or model and generate benchmarks which
            call the scripted version. Requires that `signature` is defined.

        autograd:
            If True, generate both forward and forward + backward benchmarks.
            Requires that `signature` is defined, and return value is not None.

        num_threads:
            Maps to the Timer arg. If a tuple of ints is provided, benchmarks
            will be generated for each value.

    A third method, `init_from_variants`, is provided to define several related
    benchmarks at once.
    """

    # These are the stmts which are actually executed by Timer. In the case of
    # `GroupedStmts` (init_from_stmts) they are passed through from user args.
    # In the case of `GroupedModules` (init_from_model) they are generated
    # using `signature`. (e.g. `f(x, y) -> z` generates `z = model(x, y)`)
    py_fwd_stmt: Optional[str]
    cpp_fwd_stmt: Optional[str]

    # Code block used to define a model. `init_from_stmts` will never populate
    # `cpp_model_setup`, but if TorchScript is requested it will generate
    # `py_model_setup` using `torch.jit.script`.
    py_model_setup: Optional[str]
    cpp_model_setup: Optional[str]

    # True if this benchmark used `init_from_stmts`, otherwise False.
    inferred_model_setup: bool

    # Described above
    setup: GroupedSetup
    signature_args: Optional[Tuple[str, ...]]
    signature_output: Optional[str]
    torchscript: bool
    autograd: bool
    num_threads: Tuple[int, ...]

    @classmethod
    def init_from_stmts(
        cls,
        py_stmt: Optional[str] = None,
        cpp_stmt: Optional[str] = None,

        # Generic constructor arguments
        setup: GroupedSetup = GroupedSetup(),
        signature: Optional[str] = None,
        torchscript: bool = False,
        autograd: bool = False,
        num_threads: Union[int, Tuple[int, ...]] = 1,
    ) -> "GroupedBenchmark":
        """Create a set of benchmarks from free-form statements.

        This method of benchmark definition is analogous to Timer use, where
        we simply execute the provided stmts.
        """
        if py_stmt is not None:
            py_stmt = textwrap.dedent(py_stmt)

        if cpp_stmt is not None:
            cpp_stmt = textwrap.dedent(cpp_stmt)

        signature_args, signature_output = cls._parse_signature(signature)
        py_model_setup = (
            cls._model_from_py_stmt(
                py_stmt=py_stmt,
                signature_args=signature_args,
                signature_output=signature_output
            ) if torchscript else None
        )

        return cls(
            py_fwd_stmt=py_stmt,
            cpp_fwd_stmt=cpp_stmt,
            py_model_setup=py_model_setup,
            cpp_model_setup=None,
            inferred_model_setup=True,
            setup=setup,
            signature_args=signature_args,
            signature_output=signature_output,
            torchscript=torchscript,
            autograd=autograd,
            num_threads=(num_threads,) if isinstance(num_threads, int) else num_threads,
        )

    @classmethod
    def init_from_model(
        cls,
        py_model_setup: Optional[str] = None,
        cpp_model_setup: Optional[str] = None,

        # Generic constructor arguments
        setup: GroupedSetup = GroupedSetup(),
        signature: Optional[str] = None,
        torchscript: bool = False,
        autograd: bool = False,
        num_threads: Union[int, Tuple[int, ...]] = 1,
    ) -> "GroupedBenchmark":
        """Create a set of benchmarks using torch.nn Modules.

        This method of benchmark creation takes setup code, and then calls
        a model rather than a free form block of code. As a result, there are
        two additional requirements compared to `init_from_stmts`:
          - `signature` must be provided.
          - A model (named "model") must be defined, either with `model = ...`
            or `def model(...): ...` in Python or `auto model = ...` in C++.
        """
        signature_args, signature_output = cls._parse_signature(signature)
        if signature_args is None:
            raise ValueError("signature is needed when initializing from model definitions.")

        return cls(
            *cls._make_model_invocation(signature_args, signature_output, RuntimeMode.EAGER),
            py_model_setup=py_model_setup,
            cpp_model_setup=cpp_model_setup,
            inferred_model_setup=False,
            setup=setup,
            signature_args=signature_args,
            signature_output=signature_output,
            torchscript=torchscript,
            autograd=autograd,
            num_threads=(num_threads,) if isinstance(num_threads, int) else num_threads,
        )

    @classmethod
    def init_from_variants(
        cls,
        py_block: str = "",
        cpp_block: str = "",
        num_threads: Union[int, Tuple[int, ...]] = 1,
    ) -> Dict[Union[Tuple[str, ...], Optional[str]], "GroupedBenchmark"]:

        py_cases, py_setup, py_global_setup = cls._parse_variants(py_block, Language.PYTHON)
        cpp_cases, cpp_setup, cpp_global_setup = cls._parse_variants(cpp_block, Language.CPP)

        assert not py_global_setup
        setup = GroupedSetup(
            py_setup=py_setup,
            cpp_setup=cpp_setup,
            global_setup=cpp_global_setup,
        )

        # NB: The key is actually `Tuple[str, ...]`, however MyPy gets confused
        #     and we use the superset `Union[Tuple[str, ...], Optional[str]` to
        #     match the expected signature.
        variants: Dict[Union[Tuple[str, ...], Optional[str]], GroupedBenchmark] = {}

        seen_labels: Set[str] = set()
        for label in it.chain(py_cases.keys(), cpp_cases.keys()):
            if label in seen_labels:
                continue
            seen_labels.add(label)

            py_lines = py_cases.get(label, [])
            cpp_lines = cpp_cases.get(label, [])

            n_lines = max(len(py_lines), len(cpp_lines))
            py_lines += [""] * (n_lines - len(py_lines))
            cpp_lines += [""] * (n_lines - len(cpp_lines))
            lines = [
                (py_stmt, cpp_stmt)
                for py_stmt, cpp_stmt in zip(py_lines, cpp_lines)
                if py_stmt or cpp_stmt
            ]

            for i, (py_stmt, cpp_stmt) in enumerate(lines):
                case = (f"Case: {i:>2}",) if len(lines) > 1 else ()
                variants[(label,) + case] = GroupedBenchmark.init_from_stmts(
                    py_stmt=py_stmt or None,
                    cpp_stmt=cpp_stmt or None,
                    setup=setup,
                    num_threads=num_threads,
                )

        return variants

    def __post_init__(self) -> None:
        if self.autograd and self.signature_output is None:
            raise ValueError("An output variable must be specified when `autograd=True`.")

        if self.py_model_setup and "model" not in self.py_model_setup:
            raise ValueError("`py_model_setup` appears to be missing `model` definition.")

        if self.cpp_model_setup and "model" not in self.cpp_model_setup:
            raise ValueError("`cpp_model_setup` appears to be missing `model` definition.")

    # =========================================================================
    # == String manipulation methods ==========================================
    # =========================================================================

    @staticmethod
    def _parse_signature(
        signature: Optional[str]
    ) -> Tuple[Optional[Tuple[str, ...]], Optional[str]]:
        if signature is None:
            return None, None

        match = re.search(r"^f\((.*)\) -> (.*)$", signature)
        if match is None:
            raise ValueError(f"Invalid signature: `{signature}`")

        args: Tuple[str, ...] = tuple(match.groups()[0].split(", "))
        output: str = match.groups()[1].strip()

        if "," in output:
            raise ValueError(f"Multiple return values are not currently allowed: `{output}`")

        if output == "None":
            return args, None

        return args, output

    @staticmethod
    def _model_from_py_stmt(
        py_stmt: Optional[str],
        signature_args: Optional[Tuple[str, ...]],
        signature_output: Optional[str],
    ) -> str:
        if py_stmt is None:
            raise ValueError("`py_stmt` must be defined in order to derive a model.")

        if signature_args is None:
            raise ValueError("signature is needed in order to derive a model.")

        return textwrap.dedent(f"""\
            def model({', '.join(signature_args)}):
            {{stmt_str}}
                return {signature_output}
        """).format(stmt_str=textwrap.indent(py_stmt, ' ' * 4))

    @staticmethod
    def _make_model_invocation(
        signature_args: Tuple[str, ...],
        signature_output: Optional[str],
        runtime: RuntimeMode,
    ) -> Tuple[str, str]:
        py_prefix, cpp_prefix = "", ""
        if signature_output is not None:
            py_prefix = f"{signature_output} = "
            cpp_prefix = f"auto {signature_output} = "

        if runtime == RuntimeMode.EAGER:
            model_name = "model"
            cpp_invocation = f"{cpp_prefix}{model_name}->forward({', '.join(signature_args)});"

        else:
            assert runtime == RuntimeMode.JIT
            model_name = "jit_model"
            cpp_invocation = textwrap.dedent(f"""\
                std::vector<torch::jit::IValue> ivalue_inputs({{
                    {', '.join([f'torch::jit::IValue({a})' for a in signature_args])}
                }});
                {cpp_prefix}{model_name}.forward(ivalue_inputs);
            """)

        # NB:
        #   In python we invoke __call__, however C++ doesn't have an analogous
        #   method so we invoke `forward` instead. This means that that Python
        #   is doing extra work (e.g. checking hooks) compared to C++; however
        #   because this is the default user experience that's acceptable.
        py_invocation = f"{py_prefix}{model_name}({', '.join(signature_args)})"

        return py_invocation, cpp_invocation

    @staticmethod
    def _parse_variants(block: str, language: Language) -> Tuple[Dict[str, List[str]], str, str]:
        block = textwrap.dedent(block).strip()
        comment = "#" if language == Language.PYTHON else "//"
        label_pattern = f"{comment} @(.+)$"
        label = ""

        lines_by_label: Dict[str, List[str]] = {"SETUP": [], "GLOBAL_SETUP": []}
        for line in block.splitlines(keepends=False):
            match = re.search(label_pattern, line.strip())
            if match:
                label = match.groups()[0]
                if label.replace(" ", "_").upper() in ("SETUP", "GLOBAL_SETUP"):
                    label = label.replace(" ", "_").upper()
                continue

            lines_by_label.setdefault(label, [])
            if line.startswith(comment):
                line = ""
            lines_by_label[label].append(line)

        setup = "\n".join(lines_by_label.pop("SETUP"))
        global_setup = "\n".join(lines_by_label.pop("GLOBAL_SETUP"))

        return lines_by_label, setup, global_setup


# These are the user facing APIs.
GroupedStmts = GroupedBenchmark.init_from_stmts
GroupedModules = GroupedBenchmark.init_from_model
GroupedVariants = GroupedBenchmark.init_from_variants