1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
import time
import json
import torch
import benchmark_cpp_extension # noqa: F401
"""PyTorch performance microbenchmarks.
This module contains PyTorch-specific functionalities for performance
microbenchmarks.
"""
class TorchBenchmarkBase(torch.nn.Module):
""" This is a base class used to create Pytorch operator benchmark.
module_name is the name of the operator being benchmarked.
test_name is the name (it's created by concatenating all the
inputs) of a specific test
"""
def __init__(self):
super(TorchBenchmarkBase, self).__init__()
self.user_given_name = None
self._pass_count = 0
self._num_inputs_require_grads = 0
def _set_backward_test(self, is_backward):
self._is_backward = is_backward
def auto_set(self):
""" This is used to automatically set the require_grad for the backward patch.
It is implemented based on two counters. One counter to save the number of
times init has been called. The other counter to save the number of times
this function itself has been called. In the very first time init is called,
this function counts how many inputs require gradient. In each of the
following init calls, this function will return only one true value.
Here is an example:
...
self.v1 = torch.rand(M, N, K, requires_grad=self.auto_set())
self.v2 = torch.rand(M, N, K, requires_grad=self.auto_set())
...
"""
if not self._is_backward:
return False
if self._pass_count == 0:
self._num_inputs_require_grads += 1
return True
else:
self._auto_set_counter += 1
return (self._pass_count == self._auto_set_counter)
def extract_inputs_tuple(self):
self.inputs_tuple = tuple(self.inputs.values())
@torch.jit.export
def get_inputs(self):
# Need to convert the inputs to tuple outside of JIT so that
# JIT can infer the size of the inputs.
return self.inputs_tuple
@torch.jit.export
def forward_impl(self):
# This is to supply the inputs to the forward function which
# will be called in both the eager and JIT mode of local runs
return self.forward(*self.get_inputs())
@torch.jit.export
def forward_consume(self, iters: int):
# _consume is used to avoid the dead-code-elimination optimization
for _ in range(iters):
torch.ops.operator_benchmark._consume(self.forward_impl())
def module_name(self):
""" this is used to label the operator being benchmarked
"""
if self.user_given_name:
return self.user_given_name
return self.__class__.__name__
def set_module_name(self, name):
self.user_given_name = name
def test_name(self, **kargs):
""" this is a globally unique name which can be used to
label a specific test
"""
# This is a list of attributes which will not be included
# in the test name.
skip_key_list = ['device']
test_name_str = []
for key in kargs:
value = kargs[key]
test_name_str.append(
('' if key in skip_key_list else key)
+ str(value if type(value) != bool else int(value)))
name = (self.module_name() + '_' +
'_'.join(test_name_str)).replace(" ", "")
return name
class PyTorchOperatorTestCase(object):
""" This class includes all the information needed to benchmark an operator.
op_bench: it's a user-defined class (child of TorchBenchmarkBase)
which includes input and operator, .etc
test_config: a namedtuple includes test_name, input_shape, tag, run_backward.
When run_backward is false, the run_forward method will be executed,
When run_backward is true, run_forward_eager and _output_mean will be
executed to generate output. Then, run_backward will be executed.
"""
def __init__(self, op_bench, test_config):
self.test_config = test_config
self.op_bench = op_bench
self.place_holder_tensor = torch.ones(1)
self.framework = "PyTorch"
self.time_series = []
self._jit_forward_graph = None
def _generate_jit_forward_graph(self):
""" generate a graph for the forward function via scripting
"""
scripted_op_bench = torch.jit.script(self.op_bench)
return scripted_op_bench.forward_consume
def run_jit_forward(self, num_runs, print_per_iter=False, cuda_sync=False):
""" Run the forward path of an op with JIT mode
"""
if self._jit_forward_graph is None:
self._jit_forward_graph = self._generate_jit_forward_graph()
self._jit_forward_graph(num_runs)
def _print_per_iter(self):
# print last 50 values
length = min(len(self.time_series), 50)
for i in range(length):
print("PyTorchObserver " + json.dumps(
{
"type": self.test_config.test_name,
"metric": "latency",
"unit": "ms",
"value": str(self.time_series[length - i - 1]),
}
))
def run_forward(self, num_runs, print_per_iter, cuda_sync):
""" Run the forward path of an op with eager mode
"""
if print_per_iter:
for _ in range(num_runs):
start_time = time.time()
self.output = self.op_bench.forward_impl()
if cuda_sync:
torch.cuda.synchronize(torch.cuda.current_device())
end_time = time.time()
self.time_series.append((end_time - start_time) * 1e3)
else:
for _ in range(num_runs):
self.output = self.op_bench.forward_impl()
if cuda_sync:
torch.cuda.synchronize(torch.cuda.current_device())
def _output_mean(self):
""" TODO (mingzhe): it is not necessary to sum up everything by myself,
torch.autograd.backward do take a gradient tensor. By default, it
is the same shape as your output tensor, with all 1s.
Mathematically, it is the same as if the output is summed together.
So we should be able to get ride of this method.
dummy function for gradient calculation
"""
self.mean = self.output.mean()
def run_backward(self, num_runs, print_per_iter=False):
""" Run the backward path of an op in many iterations
"""
# TODO: can we use JIT here to reduce python overhead?
for _ in range(num_runs):
self.mean.backward(retain_graph=True)
def create_pytorch_op_test_case(op_bench, test_config):
""" This method is used to generate est. func_name is a global unique
string. For PyTorch add operator with M=8, N=2, K=1, tag = long, here
are the values for the members in test_case:
op.module_name: add
framework: PyTorch
test_config: TestConfig(test_name='add_M8_N2_K1', input_config='M: 8, N: 2, K: 1',
tag='long', run_backward=False)
func_name: addPyTorchTestConfig(test_name='add_M8_N2_K1', input_config='M: 8, N: 2, K: 1',
tag='long', run_backward=False)
"""
test_case = PyTorchOperatorTestCase(op_bench, test_config)
test_config = test_case.test_config
op = test_case.op_bench
func_name = "{}{}{}".format(op.module_name(), test_case.framework, str(test_config))
return (func_name, test_case)
|