File: matmul_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (50 lines) | stat: -rw-r--r-- 1,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

import operator_benchmark as op_bench
import benchmark_caffe2 as op_bench_c2
from benchmark_caffe2 import Caffe2BenchmarkBase  # noqa: F401
from caffe2.python import core

"""Microbenchmarks for MatMul operator"""

# Configs for C2 Matmul operator
mm_long_configs = op_bench.cross_product_configs(
    M=[8, 64, 128],
    N=range(2, 10, 3),
    K=[2 ** x for x in range(0, 3)],
    trans_a=[True, False],
    trans_b=[True, False],
    tags=["long"]
)


mm_short_configs = op_bench.config_list(
    attrs=[
        [128, 128, 128, False, True],
        [1024, 1024, 256, True, False],
        [8192, 8192, 1024, True, False],
    ],
    attr_names=["M", "N", "K", "trans_a", "trans_b"],
    tags=["short"],
)


class MatMulBenchmark(op_bench_c2.Caffe2BenchmarkBase):
    def init(self, M, N, K, trans_a, trans_b):
        self.input_one = self.tensor([N, M]) if trans_a else self.tensor([M, N])
        self.input_two = self.tensor([K, N]) if trans_b else self.tensor([N, K])
        self.args = {'trans_a': trans_a, 'trans_b': trans_b}
        self.output = self.tensor([M, K])
        self.set_module_name("matmul")

    def forward(self):
        op = core.CreateOperator(
            "MatMul", [self.input_one, self.input_two], self.output, **self.args
        )
        return op


op_bench_c2.generate_c2_test(mm_long_configs + mm_short_configs, MatMulBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()