File: pt_backward_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (29 lines) | stat: -rw-r--r-- 828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import operator_benchmark as op_bench
import torch


add_configs = op_bench.cross_product_configs(
    M=[8, 1],
    N=[8, 2],
    K=[8, 4],
    tags=["short"]
)

# This benchmark uses the auto_set to automatically set requires_grad
# for both inputs. The test name can also be used for filtering.
class AddBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K):
        self.input_one = torch.rand(M, N, K, requires_grad=self.auto_set())
        self.input_two = torch.rand(M, N, K, requires_grad=self.auto_set())
        self.set_module_name("add")

    def forward(self):
        return torch.add(self.input_one, self.input_two)


op_bench.generate_pt_test(add_configs, AddBenchmark)
op_bench.generate_pt_gradient_test(add_configs, AddBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()