File: as_strided_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (56 lines) | stat: -rw-r--r-- 1,460 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import operator_benchmark as op_bench
import torch
from typing import List


"""Microbenchmarks for as_strided operator"""


# Configs for PT as_strided operator
as_strided_configs_short = op_bench.config_list(
    attr_names=["M", "N", "size", "stride", "storage_offset"],
    attrs=[
        [8, 8, (2, 2), (1, 1), 0],
        [256, 256, (32, 32), (1, 1), 0],
        [512, 512, (64, 64), (2, 2), 1],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=["short"],
)

as_strided_configs_long = op_bench.cross_product_configs(
    M=[512],
    N=[1024],
    size=[(16, 16), (128, 128)],
    stride=[(1, 1)],
    storage_offset=[0, 1],
    device=['cpu', 'cuda'],
    tags=['long']
)


class As_stridedBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, size, stride, storage_offset, device):
        self.inputs = {
            "input_one": torch.rand(M, N, device=device),
            "size": size,
            "stride": stride,
            "storage_offset": storage_offset
        }
        self.set_module_name('as_strided')

    def forward(
        self, input_one, size: List[int], stride: List[int], storage_offset: int
    ):
        return torch.as_strided(
            input_one, size, stride, storage_offset)


op_bench.generate_pt_test(as_strided_configs_short + as_strided_configs_long,
                          As_stridedBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()