File: bmm_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (31 lines) | stat: -rw-r--r-- 925 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import operator_benchmark as op_bench
import torch

"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""

class BmmBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, B, M, N, K, device, op):
        self.inputs = {
            "batch1": torch.rand((B, M, K), device=device, requires_grad=self.auto_set()),
            "batch2": torch.rand((B, K, N,), device=device, requires_grad=self.auto_set())
        }
        self.set_module_name(f"bmm (actual op={op}")
        self.op = torch.bmm if op == "bmm" else torch.matmul

    def forward(self, batch1, batch2):
        return self.op(batch1, batch2)

bmm_configs = op_bench.cross_product_configs(
    B=[2, 100],
    M=[8, 256],
    N=[256, 16],
    K=[16, 32],
    device=['cpu'],
    tags=["short"],
    op=["bmm", "matmul"],
)

op_bench.generate_pt_test(bmm_configs, BmmBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()