1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
import operator_benchmark as op_bench
import torch
import random
from typing import List
"""Microbenchmarks for Cat operator"""
cross_product_configs = {
'device': ['cpu', 'cuda'],
}
# Configs for PT Cat operator
cat_configs_short = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(1, 1, 1), 2, 0], # noqa: E241
[(512, 512, 2), 2, 1], # noqa: E241
[(128, 1024, 2), 2, 1], # noqa: E241
],
cross_product_configs=cross_product_configs,
tags=['short'],
)
# Configs specific to static runtime feature - a fast path runtime for pared down models
cat_configs_static_runtime = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[[(1, 160), (1, 14)], -1, 1],
[[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1],
[[(1, 580), (1, 174)], -1, 1],
[[(20, 160), (20, 14)], -1, 1],
[[(20, 20, 40), (20, 4, 40), (20, 5, 40)], -1, 1],
[[(20, 580), (20, 174)], -1, 1],
],
cross_product_configs=cross_product_configs,
tags=['static_runtime'],
)
cat_configs_long = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(2**10, 2**10, 2), 2, 0], # noqa: E241
[(2**10+1, 2**10-1, 2), 2, 1], # noqa: E226,E241
[(2**10, 2**10, 2), 2, 2], # noqa: E241
[[ lambda: random.randint(2**6, 2**7), 2**7-17, 2**6+1], # noqa: E201,E226,E241
5, 0],
[[ 2**6+2**5, lambda: random.randint(2**6, 2**7), 2**6], # noqa: E201,E226,E241,E272
5, 1],
[[ 2**7, 2**6, lambda: random.randint(2**6, 2**7)], # noqa: E201,E241,E272
5, 2],
[[lambda: random.randint(2**5, 2**6), 2**5, 2**6], # noqa: E241
50, 0],
[[2**5, lambda: random.randint(2**5, 2**6), 2**6], # noqa: E241,E272
50, 1],
[[2**5+1, 2**6+1, lambda: random.randint(2**5, 2**6)], # noqa: E226,E241,E272
50, 2],
],
cross_product_configs=cross_product_configs,
tags=['long'],
)
# There is a different codepath on CUDA for >4 dimensions
cat_configs_multidim = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(2**6, 2**5, 2**2, 2**4, 2**5), 2, 2], # noqa: E241
[(2**4, 2**5, 2**2, 2**4, 2**5), 8, 2], # noqa: E241
[(2**3+1, 2**5-1, 2**2+1, 2**4-1, 2**5+1), 17, 4], # noqa: E226,E241
],
cross_product_configs=cross_product_configs,
tags=['multidim'],
)
cat_configs_manyinputs = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[[lambda: random.randint(1, 10000)], 100, 0],
[[lambda: random.randint(1, 1000)], 1000, 0],
[[lambda: random.randint(1, 500)], 2000, 0],
[[lambda: random.randint(1, 300)], 3000, 0],
],
cross_product_configs=cross_product_configs,
tags=['manyinputs'],
)
class CatBenchmark(op_bench.TorchBenchmarkBase):
def init(self, sizes, N, dim, device):
random.seed(42)
inputs = []
gen_sizes = []
if type(sizes) == list and N == -1:
gen_sizes = sizes
else:
for i in range(N):
gen_sizes.append([old_size() if callable(old_size) else old_size for old_size in sizes])
for s in gen_sizes:
inputs.append(torch.rand(s, device=device))
result = torch.empty(0, device=device)
self.inputs = {
"result": result,
"inputs": inputs,
"dim": dim
}
self.set_module_name('cat')
def forward(self, result: torch.Tensor, inputs: List[torch.Tensor], dim: int):
return torch.cat(inputs, dim=dim, out=result)
op_bench.generate_pt_test(cat_configs_short +
cat_configs_long +
cat_configs_multidim +
cat_configs_manyinputs +
cat_configs_static_runtime,
CatBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|