File: cat_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (122 lines) | stat: -rw-r--r-- 4,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import operator_benchmark as op_bench
import torch
import random
from typing import List


"""Microbenchmarks for Cat operator"""

cross_product_configs = {
    'device': ['cpu', 'cuda'],
}

# Configs for PT Cat operator
cat_configs_short = op_bench.config_list(
    attr_names=['sizes', 'N', 'dim'],
    attrs=[
        [(1,    1,      1), 2, 0],  # noqa: E241
        [(512,  512,    2), 2, 1],  # noqa: E241
        [(128, 1024,    2), 2, 1],  # noqa: E241
    ],
    cross_product_configs=cross_product_configs,
    tags=['short'],
)

# Configs specific to static runtime feature - a fast path runtime for pared down models
cat_configs_static_runtime = op_bench.config_list(
    attr_names=['sizes', 'N', 'dim'],
    attrs=[
        [[(1, 160), (1, 14)], -1, 1],
        [[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1],
        [[(1, 580), (1, 174)], -1, 1],
        [[(20, 160), (20, 14)], -1, 1],
        [[(20, 20, 40), (20, 4, 40), (20, 5, 40)], -1, 1],
        [[(20, 580), (20, 174)], -1, 1],
    ],
    cross_product_configs=cross_product_configs,
    tags=['static_runtime'],
)

cat_configs_long = op_bench.config_list(
    attr_names=['sizes', 'N', 'dim'],
    attrs=[
        [(2**10,    2**10,      2), 2, 0],  # noqa: E241
        [(2**10+1,  2**10-1,    2), 2, 1],  # noqa: E226,E241
        [(2**10,    2**10,      2), 2, 2],  # noqa: E241

        [[ lambda: random.randint(2**6, 2**7),      2**7-17,    2**6+1],  # noqa: E201,E226,E241
            5, 0],
        [[ 2**6+2**5,   lambda: random.randint(2**6, 2**7),     2**6],  # noqa: E201,E226,E241,E272
            5, 1],
        [[ 2**7,        2**6,       lambda: random.randint(2**6, 2**7)],  # noqa: E201,E241,E272
            5, 2],

        [[lambda: random.randint(2**5, 2**6),       2**5,       2**6],  # noqa: E241
            50, 0],
        [[2**5,         lambda: random.randint(2**5, 2**6),     2**6],  # noqa: E241,E272
            50, 1],
        [[2**5+1,       2**6+1,         lambda: random.randint(2**5, 2**6)],  # noqa: E226,E241,E272
            50, 2],
    ],
    cross_product_configs=cross_product_configs,
    tags=['long'],
)

# There is a different codepath on CUDA for >4 dimensions
cat_configs_multidim = op_bench.config_list(
    attr_names=['sizes', 'N', 'dim'],
    attrs=[
        [(2**6,     2**5,   2**2,   2**4,   2**5), 2, 2],  # noqa: E241
        [(2**4,     2**5,   2**2,   2**4,   2**5), 8, 2],  # noqa: E241
        [(2**3+1,   2**5-1, 2**2+1, 2**4-1, 2**5+1), 17, 4],  # noqa: E226,E241
    ],
    cross_product_configs=cross_product_configs,
    tags=['multidim'],
)

cat_configs_manyinputs = op_bench.config_list(
    attr_names=['sizes', 'N', 'dim'],
    attrs=[
        [[lambda: random.randint(1, 10000)], 100, 0],
        [[lambda: random.randint(1, 1000)], 1000, 0],
        [[lambda: random.randint(1, 500)], 2000, 0],
        [[lambda: random.randint(1, 300)], 3000, 0],
    ],
    cross_product_configs=cross_product_configs,
    tags=['manyinputs'],
)

class CatBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, sizes, N, dim, device):
        random.seed(42)
        inputs = []
        gen_sizes = []
        if type(sizes) == list and N == -1:
            gen_sizes = sizes
        else:
            for i in range(N):
                gen_sizes.append([old_size() if callable(old_size) else old_size for old_size in sizes])

        for s in gen_sizes:
            inputs.append(torch.rand(s, device=device))
        result = torch.empty(0, device=device)
        self.inputs = {
            "result": result,
            "inputs": inputs,
            "dim": dim
        }
        self.set_module_name('cat')

    def forward(self, result: torch.Tensor, inputs: List[torch.Tensor], dim: int):
        return torch.cat(inputs, dim=dim, out=result)


op_bench.generate_pt_test(cat_configs_short +
                          cat_configs_long +
                          cat_configs_multidim +
                          cat_configs_manyinputs +
                          cat_configs_static_runtime,
                          CatBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()