File: diag_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (44 lines) | stat: -rw-r--r-- 1,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import operator_benchmark as op_bench
import torch


"""Microbenchmarks for diag operator"""


# Configs for PT diag operator
diag_configs_short = op_bench.config_list(
    attr_names=['dim', 'M', 'N', 'diagonal', 'out'],
    attrs=[
        [1, 64, 64, 0, True],
        [2, 128, 128, -10, False],
        [1, 256, 256, 20, True],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=['short'],
)


class DiagBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, dim, M, N, diagonal, out, device):
        self.inputs = {
            "input": torch.rand(M, N, device=device) if dim == 2 else torch.rand(M, device=device),
            "diagonal": diagonal,
            "out": out,
            "out_tensor": torch.tensor((),)
        }
        self.set_module_name('diag')

    def forward(self, input, diagonal: int, out: bool, out_tensor):
        if out:
            return torch.diag(input, diagonal=diagonal, out=out_tensor)
        else:
            return torch.diag(input, diagonal=diagonal)


op_bench.generate_pt_test(diag_configs_short, DiagBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()