File: embeddingbag_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (48 lines) | stat: -rw-r--r-- 2,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import operator_benchmark as op_bench
import torch
import numpy
from pt import configs

"""Embedding and EmbeddingBag Operator Benchmark"""

class EmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, embeddingbags, dim, mode, input_size, offset, sparse, include_last_offset, device):
        self.embedding = torch.nn.EmbeddingBag(
            num_embeddings=embeddingbags,
            embedding_dim=dim,
            mode=mode,
            include_last_offset=include_last_offset,
            sparse=sparse).to(device=device)
        numpy.random.seed((1 << 32) - 1)
        offsets = torch.LongTensor([offset], device=device)
        input = torch.tensor(numpy.random.randint(0, embeddingbags, input_size), device=device).long()
        self.inputs = {
            "input": input,
            "offset": torch.cat((offsets, torch.tensor([input.size(0)], dtype=torch.long)), 0)
        }
        self.set_module_name('embeddingbag')

    def forward(self, input, offset):
        return self.embedding(input, offset)

op_bench.generate_pt_test(configs.embeddingbag_short_configs, EmbeddingBagBenchmark)
op_bench.generate_pt_gradient_test(configs.embeddingbag_short_configs, EmbeddingBagBenchmark)

class EmbeddingBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, num_embeddings, embedding_dim, input_size, device):
        self.embedding = torch.nn.Embedding(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim).to(device=device)
        numpy.random.seed((1 << 32) - 1)
        input = torch.tensor(numpy.random.randint(0, num_embeddings, input_size), device=device).long()
        self.inputs = {"input": input}
        self.set_module_name('embedding')

    def forward(self, input):
        return self.embedding(input)

op_bench.generate_pt_test(configs.embedding_short_configs, EmbeddingBenchmark)
op_bench.generate_pt_gradient_test(configs.embedding_short_configs, EmbeddingBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()