File: gather_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (51 lines) | stat: -rw-r--r-- 1,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import operator_benchmark as op_bench
import torch
import numpy


"""Microbenchmarks for gather operator."""

# An example input from this configuration is M=4, N=4, dim=0.
gather_configs_short = op_bench.config_list(
    attr_names=["M", "N", "dim"],
    attrs=[
        [256, 512, 0],
        [512, 512, 1],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=["short"]
)


gather_configs_long = op_bench.cross_product_configs(
    M=[128, 1024],
    N=[128, 1024],
    dim=[0, 1],
    device=['cpu', 'cuda'],
    tags=["long"]
)


class GatherBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, dim, device):
        min_val = M if dim == 0 else N
        numpy.random.seed((1 << 32) - 1)
        self.inputs = {
            "input_one": torch.rand(M, N, device=device),
            "dim": dim,
            "index": torch.tensor(numpy.random.randint(0, min_val, (M, N)), device=device)
        }
        self.set_module_name("gather")

    def forward(self, input_one, dim: int, index):
        return torch.gather(input_one, dim, index)


op_bench.generate_pt_test(gather_configs_short + gather_configs_long,
                          GatherBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()