1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for interpolate operator."""
class InterpolateBenchmark(op_bench.TorchBenchmarkBase):
def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float):
input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu',
requires_grad=self.auto_set())
if channels_last:
if input_image.ndim == 4:
input_image = input_image.contiguous(memory_format=torch.channels_last)
elif input_image.ndim == 5:
input_image = input_image.contiguous(memory_format=torch.channels_last_3d)
else:
raise ValueError(
f"Can not set channels_last to the input of {input_image.ndim} dims"
)
align_corners = None if mode == "nearest" else False
if mode == "linear":
mode = {
3: 'linear',
4: 'bilinear',
5: 'trilinear',
}[input_image.ndim]
self.inputs = {
"input_image": input_image,
"output_size": output_size,
"mode": mode,
"align_corners": align_corners,
}
self.set_module_name("interpolate")
def forward(self, input_image, output_size, mode, align_corners):
return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode,
align_corners=align_corners)
config_short = op_bench.config_list(
attr_names=["input_size", "output_size"],
attrs=[
[(1, 3, 60, 40), (24, 24)],
[(1, 3, 600, 400), (240, 240)],
[(1, 3, 320, 320), (256, 256)],
],
cross_product_configs={
'channels_last': [True, False],
'mode': ["nearest", "linear", "bicubic"],
},
tags=["short"],
)
config_short += op_bench.config_list(
attr_names=["input_size", "output_size"],
attrs=[
[(1, 3, 60, 40), (24, 24)],
[(1, 3, 600, 400), (240, 240)],
[(1, 3, 320, 320), (256, 256)],
],
cross_product_configs={
'channels_last': [True, False],
'mode': ["nearest", ],
'dtype': [torch.uint8, ],
},
tags=["short"],
)
config_long = op_bench.config_list(
attr_names=["input_size", "output_size"],
attrs=[
[(1, 3, 320, 320), (512, 512)],
[(1, 3, 500, 500), (256, 256)],
[(1, 3, 500, 500), (800, 800)],
# vectorization test-case
[(2, 128, 64, 46), (128, 128)],
[(2, 128, 64, 46), (32, 24)],
],
cross_product_configs={
'channels_last': [True, False],
'mode': ["nearest", "linear", "bicubic"],
},
tags=["long"],
)
config_3d = op_bench.config_list(
# no channels_last for 3D tensors
attr_names=["input_size", "output_size"],
attrs=[
[(4, 512, 320), (256,)],
[(4, 512, 320), (512,)],
],
cross_product_configs={
'mode': ["nearest", "linear"],
},
tags=["long"],
)
config_5d = op_bench.config_list(
attr_names=["input_size", "output_size"],
attrs=[
[(1, 3, 16, 320, 320), (8, 256, 256)],
[(1, 3, 16, 320, 320), (32, 512, 512)],
# vectorization test-case
[(1, 16, 32, 64, 64), (16, 32, 32)],
[(1, 16, 32, 64, 64), (64, 128, 128)],
],
cross_product_configs={
'channels_last': [True, False],
'mode': ["nearest", "linear"],
},
tags=["long"],
)
for config in (config_short, config_long, config_3d, config_5d):
op_bench.generate_pt_test(config, InterpolateBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|