File: linear_unpack_fp16_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (47 lines) | stat: -rw-r--r-- 1,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import operator_benchmark as op_bench
import torch

"""Microbenchmarks for linear_unpack_fp16_ operator. Supports both Caffe2/PyTorch."""

# Configs for PT linear_unpack_fp16 operator
linear_unpack_fp16_long_configs = op_bench.cross_product_configs(
    M=[8, 128],
    N=[32, 64],
    K=[256, 512],
    device=['cpu'],
    tags=["long"]
)

linear_unpack_fp16_short_configs = op_bench.config_list(
    attr_names=["M", "N", "K"],
    attrs=[
        [1, 1, 1],
        [64, 64, 64],
        [64, 64, 128],
    ],
    cross_product_configs={
        'device': ['cpu'],
    },
    tags=["short"],
)

class LinearUnpackFP16Benchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, device):
        # input to unpack operator must be what the output is for prepack operator
        self.inputs = {
            "input_one": torch.ops.quantized.linear_prepack_fp16(torch.rand(M, N, K, device=device,
                                                                            requires_grad=False,
                                                                            dtype=torch.float32))
        }
        self.set_module_name("linear_unpack_fp16")

    def forward(self, input_one):
        return torch.ops.quantized.linear_unpack_fp16(input_one)

# The generated test names based on linear_unpack_fp16_short_configs will be in the following pattern:
# linear_unpack_fp16_M8_N16_K32_devicecpu

op_bench.generate_pt_test(linear_unpack_fp16_long_configs + linear_unpack_fp16_short_configs, LinearUnpackFP16Benchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()