File: matmul_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (52 lines) | stat: -rw-r--r-- 1,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import operator_benchmark as op_bench
import torch

"""Microbenchmarks for MatMul operator"""

# Configs for PT Matmul operator
mm_short_configs = op_bench.config_list(
    attr_names=["M", "N", "K", "trans_a", "trans_b"],
    attrs=[
        [1, 1, 1, True, False],
        [128, 128, 128, True, False],
        [256, 256, 256, False, True],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=["short"],
)


mm_long_configs = op_bench.cross_product_configs(
    M=[32],
    N=[512, 128],
    K=[64],
    trans_a=[False, True],
    trans_b=[True, False],
    device=['cpu', 'cuda'],
    tags=["long"]
)


class MatMulBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, trans_a, trans_b, device):
        self.inputs = {
            "input_one": torch.rand(M, N, device=device)
            if trans_a
            else torch.rand(N, M, device=device).t(),
            "input_two": torch.rand(N, K, device=device)
            if trans_b
            else torch.rand(K, N, device=device).t(),
        }
        self.set_module_name("matmul")

    def forward(self, input_one, input_two):
        return torch.matmul(input_one, input_two)


op_bench.generate_pt_test(mm_long_configs + mm_short_configs, MatMulBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()