1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
import operator_benchmark as op_bench
import torch
"""
Microbenchmarks for batch matrix mult with einsum and torch.bmm.
"""
batch_mm_configs_short = op_bench.config_list(
attr_names=["B", "M", "N", "K"],
attrs=[
[4, 5, 3, 2],
[32, 25, 20, 30],
[128, 100, 120, 110],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=["short"],
)
batch_mm_configs_long = op_bench.config_list(
attr_names=["B", "M", "N", "K"],
attrs=[
[128, 256, 128, 256],
[512, 1024, 1024, 512],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=["long"],
)
batch_mm_op_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['einsum_bmm', torch.einsum],
['bmm', torch.bmm],
],
)
class BatchMatrixMultBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, K, device, op_func):
self.inputs = {
"input_one": torch.rand(B, M, N, device=device),
"input_two": torch.rand(B, N, K, device=device)
}
self.op_func = op_func
def forward(self, input_one, input_two):
if self.op_func.__name__ == "einsum":
return torch.einsum('bij,bjk->bik', input_one, input_two)
else:
return torch.bmm(input_one, input_two)
"""
Microbenchmarks for element-wise matrix mult with einsum and torch.mul.
"""
batch_elementwise_configs_short = op_bench.config_list(
attr_names=["B", "M", "N"],
attrs=[
[4, 5, 3],
[32, 25, 20],
[100, 90, 110],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=["short"],
)
batch_elementwise_configs_long = op_bench.cross_product_configs(
B=[128, 512, 1024],
M=[128, 512, 1024],
N=[128, 512, 1024],
device=['cpu', 'cuda'],
tags=['long']
)
batch_elementwise_op_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['einsum_elementwise', torch.einsum],
['mul', torch.mul],
],
)
class BatchElementWiseBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, device, op_func):
self.inputs = {
"input_one": torch.rand(B, M, N, device=device),
"input_two": torch.rand(B, M, N, device=device)
}
self.op_func = op_func
def forward(self, input_one, input_two):
if self.op_func.__name__ == "einsum":
return torch.einsum('bij,bij->bij', input_one, input_two)
else:
return torch.mul(input_one, input_two)
op_bench.generate_pt_tests_from_op_list(
batch_mm_op_list,
batch_mm_configs_short + batch_mm_configs_long,
BatchMatrixMultBenchmark,
)
op_bench.generate_pt_tests_from_op_list(
batch_elementwise_op_list,
batch_elementwise_configs_short + batch_elementwise_configs_long,
BatchElementWiseBenchmark,
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|