1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
import operator_benchmark as op_bench
import torch
import torch.ao.nn.qat as nnqat
import numpy
from pt import configs
from torch.ao.quantization import default_embedding_qat_qconfig
"""
Microbenchmarks for QAT Embedding + EmbeddingBag operators.
"""
class QATEmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
def init(self, embeddingbags, dim, mode, input_size, offset, sparse, include_last_offset, device):
qconfig = default_embedding_qat_qconfig
self.embedding = nnqat.EmbeddingBag(
num_embeddings=embeddingbags,
embedding_dim=dim,
mode=mode,
include_last_offset=include_last_offset,
sparse=sparse, device=device, qconfig=qconfig)
numpy.random.seed((1 << 32) - 1)
offsets = torch.LongTensor([offset], device=device)
input = torch.tensor(numpy.random.randint(0, embeddingbags, input_size), device=device).long()
self.inputs = {
"input": input,
"offset": torch.cat((offsets, torch.tensor([input.size(0)], dtype=torch.long)), 0)
}
self.set_module_name('qatEmbeddingBag')
def forward(self, input, offset):
return self.embedding(input, offset)
# Currently, EmbeddingBag QAT does not support sparse embeddings.
embeddingbag_short_dense_configs = [config for config in configs.embeddingbag_short_configs
if {'sparse': True} not in config]
op_bench.generate_pt_test(embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark)
op_bench.generate_pt_gradient_test(embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark)
class QATEmbeddingBenchmark(op_bench.TorchBenchmarkBase):
def init(self, num_embeddings, embedding_dim, input_size, device):
qconfig = default_embedding_qat_qconfig
self.embedding = nnqat.Embedding(
num_embeddings=num_embeddings,
embedding_dim=embedding_dim,
qconfig=qconfig, device=device)
self.embedding.qconfig = default_embedding_qat_qconfig
numpy.random.seed((1 << 32) - 1)
self.input = torch.tensor(numpy.random.randint(0, num_embeddings, input_size),
device=device).long()
self.inputs = {"input": self.input}
self.set_module_name('qatEmbedding')
def forward(self, input):
return self.embedding(input)
op_bench.generate_pt_test(configs.embedding_short_configs, QATEmbeddingBenchmark)
op_bench.generate_pt_gradient_test(configs.embedding_short_configs, QATEmbeddingBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|