1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
import operator_benchmark as op_bench
import torch
import torch.ao.nn.quantized as nnq
from pt import configs
"""
Microbenchmarks for qConv operators.
"""
class QConv1dBenchmark(op_bench.TorchBenchmarkBase):
# def init(self, N, IC, OC, L, G, kernel, stride, pad):
def init(self, IC, OC, kernel, stride, N, L, device):
G = 1
pad = 0
self.scale = 1.0 / 255
self.zero_point = 0
X = torch.randn(N, IC, L, dtype=torch.float32)
qX = torch.quantize_per_tensor(
X, scale=self.scale, zero_point=self.zero_point, dtype=torch.quint8
)
# Convert the tensor to NHWC format
W = torch.randn(OC, IC // G, kernel, dtype=torch.float32)
self.qW = torch.quantize_per_tensor(W, scale=self.scale, zero_point=0, dtype=torch.qint8)
self.inputs = {
"input": qX
}
self.qconv1d = nnq.Conv1d(IC, OC, kernel, stride=stride, padding=pad, groups=G)
self.qconv1d.set_weight_bias(self.qW, None)
self.qconv1d.scale = torch.tensor(self.scale, dtype=torch.double)
self.qconv1d.zero_point = torch.tensor(self.zero_point, dtype=torch.int)
self.set_module_name("QConv1d")
def forward(self, input):
return self.qconv1d(input)
class QConv2dBenchmark(op_bench.TorchBenchmarkBase):
# def init(self, N, IC, OC, H, W, G, kernel, stride, pad):
def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
# super(QConv2dBenchmark, self).init(N, IC, OC, (H, W), G, (kernel, kernel), stride, pad)
self.scale = 1.0 / 255
self.zero_point = 0
X = torch.randn(N, IC, H, W, dtype=torch.float32)
qX = torch.quantize_per_tensor(
X, scale=self.scale, zero_point=self.zero_point, dtype=torch.quint8
)
# Convert the tensor to NHWC format
W = torch.randn(OC, IC // G, kernel, kernel, dtype=torch.float32)
self.qW = torch.quantize_per_tensor(W, scale=self.scale, zero_point=0, dtype=torch.qint8)
self.inputs = {
"input": qX
}
self.qconv2d = nnq.Conv2d(IC, OC, kernel, stride=stride, padding=pad, groups=G)
self.qconv2d.set_weight_bias(self.qW, None)
self.qconv2d.scale = torch.tensor(self.scale, dtype=torch.double)
self.qconv2d.zero_point = torch.tensor(self.zero_point, dtype=torch.int)
self.set_module_name("QConv2d")
def forward(self, input):
return self.qconv2d(input)
op_bench.generate_pt_test(configs.remove_cuda(configs.conv_1d_configs_short + configs.conv_1d_configs_long), QConv1dBenchmark)
op_bench.generate_pt_test(configs.remove_cuda(configs.conv_2d_configs_short + configs.conv_2d_configs_long), QConv2dBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|