1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
import operator_benchmark as op_bench
import torch
import numpy as np
from typing import Optional
from torch.testing._internal.common_quantization import (
lengths_to_offsets
)
torch.ops.load_library("//caffe2/torch/fb/sparsenn:sparsenn_operators")
embedding_bag_rowwise_offsets_short_configs = op_bench.cross_product_configs(
num_embeddings=(80,),
embedding_dim=(128, 256),
num_offsets=range(2, 10),
enable_per_sample_weights=(True, False),
include_last_offset=(True, False),
is_pruned_weights=(True, False,),
use_32bit_indices=(True, False),
use_32bit_offsets=(True, False),
tags=['short'],
)
embedding_bag_rowwise_offsets_long_configs = op_bench.cross_product_configs(
num_embeddings=(100, 120, 1000, 10_000, 20_000),
embedding_dim=(16, 64, 128, 256),
num_offsets=range(10, 20),
enable_per_sample_weights=(True, False),
include_last_offset=(True, False),
is_pruned_weights=(True, False,),
use_32bit_indices=(True, False),
use_32bit_offsets=(True, False),
tags=['long']
)
full_configs = embedding_bag_rowwise_offsets_short_configs + embedding_bag_rowwise_offsets_long_configs
four_bit_rowwise_ops = op_bench.op_list(
attrs=(
('qembeddingbag_4bit_rowwise_offsets', torch.ops.quantized.embedding_bag_4bit_rowwise_offsets),
),
attr_names=('op_name', 'op_func'),
)
byte_rowwise_ops = op_bench.op_list(
attrs=(
('qembeddingbag_byte_rowwise_offsets', torch.ops.quantized.embedding_bag_byte_rowwise_offsets),
),
attr_names=('op_name', 'op_func'),
)
def get_pruned_weights_and_mapping(q_weights):
indicator = torch.from_numpy(np.random.uniform(
low=-1.0, high=1.0, size=[q_weights.shape[0]]).astype(np.float32))
q_pruned_weights, compressed_indices_mapping = torch.ops.fb.embedding_bag_rowwise_prune(
q_weights, indicator, 0.01, torch.int32)
return q_pruned_weights, compressed_indices_mapping
class EmbedddingBag4BitRowwiseOffsetsTest(op_bench.TorchBenchmarkBase):
def init(self,
num_embeddings: int,
embedding_dim: int,
num_offsets: int,
enable_per_sample_weights: bool,
include_last_offset: bool,
is_pruned_weights: bool,
use_32bit_indices: bool,
use_32bit_offsets: bool,
op_func):
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.num_offsets = num_offsets
self.enable_per_sample_weights = enable_per_sample_weights
self.include_last_offset = include_last_offset
self.max_segment_length = 20
self.num_lengths = np.random.randint(1, num_offsets + 1)
self.lengths = np.random.randint(0, self.max_segment_length + 1,
size=self.num_lengths).astype(np.int32)
self.num_indices = np.sum(self.lengths)
self.is_pruned_weights = is_pruned_weights
self.use_32bit_indices = use_32bit_indices
self.use_32bit_offsets = use_32bit_offsets
self.offsets = lengths_to_offsets(self.lengths)
self.indices = torch.from_numpy(np.random.randint(
low=0, high=num_embeddings, size=self.num_indices, dtype=np.int64))
self.indices = self.indices.int() if self.use_32bit_indices else self.indices
self.offsets = self.offsets.int() if self.use_32bit_offsets else self.offsets
if self.include_last_offset:
self.offsets = torch.cat(
(self.offsets, torch.tensor([self.indices.size(0)], dtype=torch.long)), 0
)
self.weights = torch.from_numpy((np.random.random_sample((
self.num_embeddings, self.embedding_dim)) + 1).astype(np.float32))
self.indices = torch.from_numpy(np.random.randint(
low=0, high=self.num_embeddings, size=self.num_indices, dtype=np.int64))
self.prepack_func = torch.ops.quantized.embedding_bag_4bit_prepack
self.prepacked_weights = self.prepack_func(self.weights)
self.per_sample_weights = torch.from_numpy(np.random.uniform(
low=0.01, high=0.5, size=[len(self.indices)]).astype(np.float32)) if \
self.enable_per_sample_weights else None
self.compressed_indices = None
if self.is_pruned_weights:
self.prepacked_weights, self.compressed_indices = get_pruned_weights_and_mapping(self.prepacked_weights)
self.inputs = {
"prepacked_weights": self.prepacked_weights,
"indices": self.indices,
"offsets": self.offsets,
"mode": 0,
"per_sample_weights": self.per_sample_weights,
"include_last_offset": self.include_last_offset,
"is_pruned_weights": self.is_pruned_weights,
"compressed_indices": self.compressed_indices
}
self.op_func = op_func
def forward(
self,
prepacked_weights,
indices,
offsets,
mode: int,
per_sample_weights: Optional[torch.Tensor],
include_last_offset: bool,
is_pruned_weights: bool,
compressed_indices: Optional[torch.Tensor]
):
return self.op_func(prepacked_weights, indices, offsets,
mode=mode,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
pruned_weights=is_pruned_weights,
compressed_indices_mapping=compressed_indices)
class EmbedddingBagByteRowwiseOffsetsTest(op_bench.TorchBenchmarkBase):
def init(self,
num_embeddings: int,
embedding_dim: int,
num_offsets: int,
enable_per_sample_weights: bool,
include_last_offset: bool,
is_pruned_weights: bool,
use_32bit_indices: bool,
use_32bit_offsets: bool,
op_func):
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.num_offsets = num_offsets
self.enable_per_sample_weights = enable_per_sample_weights
self.include_last_offset = include_last_offset
self.max_segment_length = 20
self.num_lengths = np.random.randint(1, num_offsets + 1)
self.lengths = np.random.randint(0, self.max_segment_length + 1,
size=self.num_lengths).astype(np.int32)
self.is_pruned_weights = is_pruned_weights
self.use_32bit_indices = use_32bit_indices
self.use_32bit_offsets = use_32bit_offsets
self.num_indices = np.sum(self.lengths)
self.offsets = lengths_to_offsets(self.lengths)
self.indices = torch.from_numpy(np.random.randint(
low=0, high=num_embeddings, size=self.num_indices, dtype=np.int64))
self.indices = self.indices.int() if self.use_32bit_indices else self.indices
self.offsets = self.offsets.int() if self.use_32bit_offsets else self.offsets
if include_last_offset:
self.offsets = torch.cat(
(self.offsets, torch.tensor([self.indices.size(0)], dtype=torch.long)), 0
)
self.weights = torch.from_numpy((np.random.random_sample((
self.num_embeddings, self.embedding_dim)) + 1).astype(np.float32))
self.indices = torch.from_numpy(np.random.randint(
low=0, high=self.num_embeddings, size=self.num_indices, dtype=np.int64))
self.prepack_func = torch.ops.quantized.embedding_bag_byte_prepack
self.prepacked_weights = self.prepack_func(self.weights)
self.per_sample_weights = torch.from_numpy(np.random.uniform(
low=0.01, high=0.5, size=[len(self.indices)]).astype(np.float32)) if \
self.enable_per_sample_weights else None
self.compressed_indices = None
if self.is_pruned_weights:
self.prepacked_weights, self.compressed_indices = get_pruned_weights_and_mapping(self.prepacked_weights)
self.inputs = {
"prepacked_weights": self.prepacked_weights,
"indices": self.indices,
"offsets": self.offsets,
"mode": 0,
"per_sample_weights": self.per_sample_weights,
"include_last_offset": self.include_last_offset,
"is_pruned_weights": self.is_pruned_weights,
"compressed_indices": self.compressed_indices
}
self.op_func = op_func
def forward(
self,
prepacked_weights,
indices,
offsets,
mode: int,
per_sample_weights: Optional[torch.Tensor],
include_last_offset: bool,
is_pruned_weights: bool,
compressed_indices: Optional[torch.Tensor]
):
return self.op_func(prepacked_weights, indices, offsets,
mode=0,
per_sample_weights=per_sample_weights,
include_last_offset=self.include_last_offset,
pruned_weights=self.is_pruned_weights,
compressed_indices_mapping=self.compressed_indices)
op_bench.generate_pt_tests_from_op_list(four_bit_rowwise_ops,
full_configs,
EmbedddingBag4BitRowwiseOffsetsTest)
op_bench.generate_pt_tests_from_op_list(byte_rowwise_ops,
full_configs,
EmbedddingBagByteRowwiseOffsetsTest)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|