1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
import operator_benchmark as op_bench
import torch
import torch.ao.nn.quantized as nnq
import numpy
from pt import configs
"""
Microbenchmarks for qEmbeddingBag operators.
"""
class QEmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
def init(self, embeddingbags, dim, mode, input_size, offset, sparse, include_last_offset, device):
self.embedding = nnq.EmbeddingBag(
num_embeddings=embeddingbags,
embedding_dim=dim,
mode=mode,
include_last_offset=include_last_offset).to(device=device)
numpy.random.seed((1 << 32) - 1)
self.input = torch.tensor(numpy.random.randint(0, embeddingbags, input_size), device=device).long()
offset = torch.LongTensor([offset], device=device)
self.offset = torch.cat((offset, torch.tensor([self.input.size(0)], dtype=torch.long)), 0)
self.inputs = {
"input": self.input,
"offset": self.offset
}
self.set_module_name('qEmbeddingBag')
def forward(self, input, offset):
return self.embedding(input, offset)
op_bench.generate_pt_test(configs.embeddingbag_short_configs, QEmbeddingBagBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|