File: qinstancenorm_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (47 lines) | stat: -rw-r--r-- 1,278 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

import operator_benchmark as op_bench
import torch


"""Microbenchmarks for quantized instancenorm operator."""

instancenorm_configs_short = op_bench.cross_product_configs(
    dims=(
        (32, 8, 16),
        (32, 8, 56, 56),
    ),
    dtype=(torch.qint8,),
    tags=["short"],
)


class QInstanceNormBenchmark(op_bench.TorchBenchmarkBase):

    def init(self, dims, dtype):
        X = (torch.rand(*dims) - 0.5) * 256
        num_channels = dims[1]
        scale = 1.0
        zero_point = 0

        self.inputs = {
            "qX": torch.quantize_per_tensor(
                X, scale=scale, zero_point=zero_point, dtype=dtype),
            "weight": torch.rand(num_channels, dtype=torch.float),
            "bias": torch.rand(num_channels, dtype=torch.float),
            "eps": 1e-5,
            "Y_scale": 0.1,
            "Y_zero_point": 0
        }

    def forward(self, qX, weight, bias, eps: float, Y_scale: float, Y_zero_point: int):
        return torch.ops.quantized.instance_norm(
            qX, weight=weight, bias=bias,
            eps=eps, output_scale=Y_scale,
            output_zero_point=Y_zero_point)


op_bench.generate_pt_test(instancenorm_configs_short, QInstanceNormBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()