File: qinterpolate_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (67 lines) | stat: -rw-r--r-- 2,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import operator_benchmark as op_bench
import torch

'''Microbenchmarks for the quantized interpolate op.

Note: We are not benchmarking `upsample` as it is being depricated, and calls
the `interpolate` anyway.
'''

qinterpolate_long_configs = op_bench.config_list(
    attr_names=['M', 'N', 'K'],
    attrs=[
        [512, 512, 512],
    ],
    cross_product_configs={
        'dtype': [torch.quint8, torch.qint8, torch.qint32],
        'mode': ['nearest', 'bilinear'],
        'scale': [0.5, 1.0, 2.0],
        'contig': [True],  # TODO: Add `False` after #29435
    },
    tags=['long']
)


qinterpolate_short_configs = op_bench.config_list(
    attr_names=['M', 'N', 'K', 'dtype', 'mode', 'scale', 'contig'],
    attrs=[
        [32, 32, 32, torch.quint8, 'nearest', 0.5, True],  # Downsample
        [32, 32, 32, torch.quint8, 'bilinear', 0.5, True],  # Downsample
        [32, 32, 32, torch.quint8, 'nearest', 2.0, True],  # Upsample
        [32, 32, 32, torch.quint8, 'bilinear', 2.0, True],  # Upsample
        [3, 720, 1280, torch.quint8, 'bilinear', 0.83333, True],  # Downsample
    ],
    tags=['short'],
)


class QInterpolateBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, K, dtype, mode, scale, contig):
        f_input = (torch.rand(1, M, N, K) - 0.5) * 256
        scale = 0.1
        zero_point = 42
        self.q_input = torch.quantize_per_tensor(f_input, scale=scale,
                                                 zero_point=zero_point,
                                                 dtype=dtype)
        if not contig:
            permute_dims = list(range(self.q_input.ndim))[::-1]
            self.q_input = self.q_input.permute(permute_dims)

        self.inputs = {
            "q_input": self.q_input,
            "scale_factor": scale,
            "mode": mode
        }
        self.set_module_name('q_interpolate')

    def forward(self, q_input, scale_factor: float, mode: str):
        return torch.nn.functional.interpolate(
            q_input, scale_factor=scale_factor, mode=mode)


op_bench.generate_pt_test(qinterpolate_short_configs + qinterpolate_long_configs,
                          QInterpolateBenchmark)


if __name__ == '__main__':
    op_bench.benchmark_runner.main()