1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
import operator_benchmark as op_bench
import torch
import torch.ao.quantization.observer as obs
qobserver_short_configs_dict = {
'attr_names': ('C', 'M', 'N', 'dtype', 'device'),
'attrs': (
(3, 512, 512, torch.quint8, 'cpu'),
(3, 512, 512, torch.quint8, 'cuda'),
),
'tags': ('short',),
}
q_hist_observer_short_configs_dict = {
'attr_names': ('C', 'M', 'N', 'dtype', 'device'),
'attrs': (
(3, 512, 512, torch.quint8, 'cpu'),
),
'tags': ('short',),
}
qobserver_long_configs_dict = {
'C': (32, 64),
'M': (256, 1024),
'N': (256, 1024),
'device': ('cpu', 'cuda'),
'dtype': (torch.quint8,), # dtype doesn't change the timing, keep the same
'tags': ('long',),
}
q_hist_observer_long_configs_dict = {
'C': (1, 3, 8),
'M': (256, 1024),
'N': (256, 1024),
'device': ('cpu',),
'dtype': (torch.quint8,), # dtype doesn't change the timing, keep the same
'tags': ('long',),
}
qobserver_per_tensor_configs_short = op_bench.config_list(
cross_product_configs={
'qscheme': (torch.per_tensor_affine, torch.per_tensor_symmetric)
},
**qobserver_short_configs_dict,
)
qobserver_per_tensor_configs_long = op_bench.cross_product_configs(
qscheme=(torch.per_tensor_affine, torch.per_tensor_symmetric),
**qobserver_long_configs_dict,
)
qobserver_per_channel_configs_short = op_bench.config_list(
cross_product_configs={
'qscheme': (torch.per_channel_affine, torch.per_channel_symmetric)
},
**qobserver_short_configs_dict,
)
qobserver_per_channel_configs_long = op_bench.cross_product_configs(
qscheme=(torch.per_channel_affine, torch.per_channel_symmetric),
**qobserver_long_configs_dict,
)
q_hist_observer_per_tensor_configs_short = op_bench.config_list(
cross_product_configs={
'qscheme': (torch.per_tensor_affine, torch.per_tensor_symmetric)
},
**q_hist_observer_short_configs_dict,
)
q_hist_observer_per_tensor_configs_long = op_bench.cross_product_configs(
qscheme=(torch.per_tensor_affine, torch.per_tensor_symmetric),
**q_hist_observer_long_configs_dict,
)
qobserver_per_tensor_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['MinMaxObserver', obs.MinMaxObserver],
['MovingAverageMinMaxObserver', obs.MovingAverageMinMaxObserver],
]
)
qobserver_per_channel_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['PerChannelMinMaxObserver', obs.PerChannelMinMaxObserver],
['MovingAveragePerChannelMinMaxObserver',
obs.MovingAveragePerChannelMinMaxObserver],
]
)
q_hist_observer_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['HistogramObserver', obs.HistogramObserver],
['HistogramObserverCalculateQparams', obs.HistogramObserver],
]
)
class QObserverBenchmark(op_bench.TorchBenchmarkBase):
def init(self, C, M, N, dtype, qscheme, op_func, device):
self.inputs = {
"f_input": torch.rand(C, M, N, device=device)
}
self.op_func = op_func(dtype=dtype, qscheme=qscheme).to(device)
def forward(self, f_input):
self.op_func(f_input)
return self.op_func.calculate_qparams()
class QObserverBenchmarkCalculateQparams(op_bench.TorchBenchmarkBase):
def init(self, C, M, N, dtype, qscheme, op_func, device):
self.f_input = torch.rand(C, M, N, device=device)
self.q_observer = op_func(dtype=dtype, qscheme=qscheme).to(device)
self.q_observer(self.f_input)
self.inputs = {}
def forward(self):
return self.q_observer.calculate_qparams()
op_bench.generate_pt_tests_from_op_list(
qobserver_per_tensor_list,
qobserver_per_tensor_configs_short + qobserver_per_tensor_configs_long,
QObserverBenchmark)
op_bench.generate_pt_tests_from_op_list(
qobserver_per_channel_list,
qobserver_per_channel_configs_short + qobserver_per_channel_configs_long,
QObserverBenchmark)
op_bench.generate_pt_tests_from_op_list(
q_hist_observer_list,
q_hist_observer_per_tensor_configs_short + q_hist_observer_per_tensor_configs_long,
QObserverBenchmarkCalculateQparams)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|