File: qrnn_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (71 lines) | stat: -rw-r--r-- 2,185 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

import operator_benchmark as op_bench
import torch
from torch import nn

"""
Microbenchmarks for RNNs.
"""

qrnn_configs = op_bench.config_list(
    attrs=[
        [1, 3, 1],
        [5, 7, 4],
    ],
    # names: input_size, hidden_size, num_layers
    attr_names=["I", "H", "NL"],
    cross_product_configs={
        "B": (True,),               # Bias always True for quantized
        "D": (False, True),         # Bidirectional
        "dtype": (torch.qint8,)     # Only qint8 dtype works for now
    },
    tags=["short"]
)

class LSTMBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, I, H, NL, B, D, dtype):
        sequence_len = 128
        batch_size = 16

        # The quantized.dynamic.LSTM has a bug. That's why we create a regular
        # LSTM, and quantize it later. See issue #31192.
        scale = 1.0 / 256
        zero_point = 0
        cell_nn = nn.LSTM(
            input_size=I,
            hidden_size=H,
            num_layers=NL,
            bias=B,
            batch_first=False,
            dropout=0.0,
            bidirectional=D,
        )
        cell_temp = nn.Sequential(cell_nn)
        self.cell = torch.ao.quantization.quantize_dynamic(cell_temp,
                                                           {nn.LSTM, nn.Linear},
                                                           dtype=dtype)[0]

        x = torch.randn(sequence_len,  # sequence length
                        batch_size,    # batch size
                        I)             # Number of features in X
        h = torch.randn(NL * (D + 1),  # layer_num * dir_num
                        batch_size,    # batch size
                        H)             # hidden size
        c = torch.randn(NL * (D + 1),  # layer_num * dir_num
                        batch_size,    # batch size
                        H)             # hidden size

        self.inputs = {
            "x": x,
            "h": h,
            "c": c
        }
        self.set_module_name("QLSTM")

    def forward(self, x, h, c):
        return self.cell(x, (h, c))[0]

op_bench.generate_pt_test(qrnn_configs, LSTMBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()